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The authors of a recent manuscript in ‘‘Nature’’ claim to have discovered ‘‘universal trends’’ of amino acid gain and loss in
protein evolution. Here, we show that this universal trend can be simply explained by a bias that is unavoidable with the
3-taxon trees used in the original analysis. We demonstrate that a rigorously reversible equilibrium model, when analyzed
with the same methods as the ‘‘Nature’’ manuscript, yields identical (and in this case, clearly erroneous) conclusions. A
main source of the bias is the division of the sequence data into ‘‘informative’’ and ‘‘noninformative’’ sites, which favors the
observation of certain transitions.

Introduction

It is obvious to most practitioners of protein sequence
analysis that protein evolutionary rates and processes
change continually. Over substantial periods of evolution-
ary time, substitutions can be irreversible and amino acid
composition may not be in equilibrium, resulting in a net
compositional ‘‘flux’’ from one amino acid type to another.
Substantial variation in evolutionary processes also exists
among proteins and among sites within the same protein.
It is of considerable interest to analyze the nature of these
variations and fluxes in order to understand their structural,
functional, and genetic causes. Also, as most modeling of
molecular evolution ignores such variation and assumes
(for mathematical, statistical, and computational conve-
nience) that protein evolution is a stationary, homogeneous,
and reversible process, an important additional question is
whether these assumptions dramatically impact the result-
ing inferences.

One common approach to analyzing flux is to infer the
ancestral state of proteins at internal nodes, or branching
points, and to then consider whether there have been
changes in state or function or amino acid frequencies be-
tween the ancestor and the descendant taxa. An example of
this type of flux analysis is the recent work of Jordan and
colleagues (2005a), which concluded that the flux in amino
acid frequencies was significant and similar in a wide
variety of organisms, leading to convergent directional
changes. Their study was based on a maximum parsimony
evaluation of simple 3-taxon trees (fig. 1a). We will refer to
the 2 closer taxa as ‘‘sister’’ taxa (S1 and S2) and the third,
more divergent taxon, as the outgroup O. In their study, a lo-
cation was informative if the amino acid in the outgroup
was the same as in one of the sister taxa, yet the amino acids
in the 2 sister taxa were different (fig. 1b). For these infor-
mative sites, it was assumed that the shared amino acid
existed in the common ancestor and remained unchanged
on the branch leading to the outgroup, on the branch leading
to the internal node I, and on the branch leading from I to
one of the sister taxa; thus a single substitution occurred
along either branch b1 or b2. Locations with different pat-
terns were deemed noninformative and were excluded from

consideration, at least for the primary analysis. The flux be-
tween 2 amino acid types, i and j, was thus measured as the
difference between the number of informative sites for
which i was in the outgroup and one sister taxon and j
was in the other (and thus an amino acid substitution from
i to j had presumably taken place) minus the number for
which the roles of i and j were reversed.

Such an analysis presents significant difficulties.
Firstly, it is possible to have asymmetric substitution rates
between individual pairs of amino acids and still have static
amino acid frequencies (McDonald 2006). More generally,
although the analysis is conceptually simple and it is tempt-
ing to view the ancestral states as ‘‘observations,’’ they are
inferred, not observed; bias in this inference will lead,
erroneously, to exactly the sorts of conclusions made by
Jordan and colleagues. Thus, findings of disequilibrium
and convergence are suspect. Unfortunately, there are a
number of known causes of statistical bias:

1. Under parsimony, the only evolutionary scenarios con-
sidered are those that lead to informative sites (fig. 1b).
The informative sites included in the analysis might rep-
resent a biased set of all locations. Certain substitutions
might be preferentially excluded from the analysis due
to their higher probability of occurring at noninforma-
tive sites, resulting in a sampling bias.

2. At informative sites, it is assumed that only one amino
acid substitution has occurred. At a fraction of such lo-
cations, multiple changes will have occurred, resulting
in erroneous reconstructions. It is possible for these
errors to produce systematic undercounting of some
substitutions with respect to others.

3. All locations are assumed to follow identical substitution
patterns, but there is strong evidence that substitution
patterns vary widely among locations (Overington
et al. 1992; Goldman and Yang 1994; Wako and
Blundell 1994; Koshi and Goldstein 1995; Bruno
1996; Kinjo and Nishikawa 2004). Faster evolving lo-
cations are more subject to the erroneous reconstruction
and sampling bias described above. The effect of this
‘‘bias of the biases’’ may be difficult to predict.

McDonald, for instance, demonstrated that a 2-allele
model under nearly neutral selection results in apparent
gains of the mildly deleterious allele without any real
changes in allele frequency (McDonald 2006).

Correcting for any of these biases with likelihood
methods depends on the accuracy of an evolutionary model
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that may be highly uncertain. In addition, any method such
as parsimony (or maximum likelihood) that chooses a single
best reconstruction of the evolutionary history at every site
may be highly biased. A good example of the effects of such
biases was provided by Krishnan et al. (2004), who dem-
onstrated that parsimony and maximum likelihood inference
uniformly and incorrectly show consistent convergent
trends of nucleotide gain and loss in primate mitochondrial
evolution, whereas Bayesian inference implies that changes
in nucleotide frequency are not convergent and much re-
duced (Krishnan et al. 2004). In particular, the incorpora-
tion of biologically reasonable variation in processes
among sites can plausibly account for all of the apparent
derived trends predicted by simpler methods.

Given that Jordan’s group used a method known to
lead to systematic biases that could erroneously produce
precisely the results they infer, it is important to investi-
gate whether their results can be explained by such biases,
and if so, the major sources and causes. Can we truly learn
something about the nature of protein evolution and the
order of amino acid incorporation from their analysis?
Are the results obtained by Jordan et al. consistent with
reversibility or static equilibrium frequencies? We ap-
proach this question by analyzing evolutionary scenarios
where the assumptions of reversibility and static equilibria
between the different amino acid types are unquestionable.
We then apply the methods of Jordan et al. to this data and
explore whether we obtain the same results as they did
with their analysis of real sequence data, that is, apparent
irreversibility and consistent long-term trends in amino
acid gain and loss. If their analysis applied to our simu-
lations yields similar results, leading to (in this case) er-
roneous conclusions of irreversibility and amino acid flux,
this suggests that their conclusions about real proteins may
also be erroneous. Our studies suggest that the observation
of parallel trends obtained from ancestral reconstruction
are problematic and that trends such as convergent
evolution that mimic known biases should be treated with
suspicion.

Methods
Simple 2-State Model of Evolution

We first consider the simple case where there are only
2 amino acid types at a position or site in a protein sequence,
and there are 3 taxa arranged as in figure 1a. In this case, the
model of evolution, the instantaneous rate of substitution
between these 2 amino acids, can be summarized as a rate
matrix (table 1). All such 2-state matrices are ‘‘necessarily’’
reversible, and the expected equilibrium frequencies of the
2 types of amino acids, pA and pB51 � pA, can be calcu-
lated directly from the substitution rates using the relation-
ship pA/pB 5 aA/aB.

Given this model of evolution, and assuming that the
substitution rate is constant over time and over positions
and that the initial frequencies of the 2 different amino acids
are identical to the equilibrium frequencies, one can easily
and exactly calculate the probability of any set of residue
types being observed at positions S1, S2, and O. Although
there is no net flux in this model, we can use the method
of Jordan to calculate the ‘‘apparent’’ difference between
nA/B, the number of A to B substitutions occurring along
branches b1 and b2, and nB/A, the number of B to A sub-
stitutions along these same 2 branches. The apparent nor-
malized flux difference for residue A (dA) is defined as the
difference in the number of apparent substitutions creating
and removing amino acid A divided by the sum of these
2 terms: dA 5 (nB/A � nA/B)/(nB/A 1 nA/B).

In the scenario with 2 sister taxa and an outgroup
(fig. 1a), it is most straightforward to consider the case
where the branches leading from the internal node to the
2 sister taxa are equal (b1 5 b2) and the branch leading
to the outgroup (b3) is longer. The b3/b1 ratio for the ge-
nome data analyzed by Jordan’s group (henceforth, we will
refer to this as simply the ‘‘genome data’’) ranged from ap-
proximately 1.5 (Pseudomonas) to over 80 (Staphylococ-
cus). To determine apparent flux levels under the 2-state
model for reasonable amino acid frequencies and branch
lengths, we performed the analysis for 3 different values
of pA, (0.6, 0.7, and 0.8), a variety of branch lengths b1

to the sister taxa, and a b3/b1 ratio of 3.
From proteins that are more densely sampled than the

genome data, it is known that there are large differences
between the overall rates of substitution in different types
of proteins, with fibrinopeptides evolving approximately 3
orders of magnitude faster than histone H4 (Dayhoff et al.
1978). Even within a single protein, it is now commonly
understood that many amino acid positions are much less
likely to substitute than others due to the greater effect on
structure and function these positions have (Pollock et al.
2000). In some proteins, over half the sites may be nearly
invariant, and many more may evolve only slowly com-
pared with the few sites (mostly on the surface and distant

FIG. 1.—A simple 3-taxon tree. In (a), the 2 closest ‘‘sister’’ taxa (S1

and S2) diverge at an internal node (I), which represents the most recent
common ancestor of these 2 taxa. At some unknown root point lies the
common ancestor of these 2 taxa and the outgroup (O). The distances,
or branch lengths, separating I from S1, S2, and O are labeled b1, b2,
and b3, respectively. In (b) parsimony reconstruction of an ‘‘informative’’
site is depicted. The amino acid i (dashed lines) is inferred to exist at the
root and in the common ancestor of the sister taxa because it is in one of the
sisters and in the outgroup. The amino acid in the ancestral node is in
parentheses to emphasize that the state here (and therefore the substitu-
tion from i to j along the branch leading to S2) is inferred rather than ob-
served as in the 2 sister taxa and the outgroup.

Table 1
Instantaneous Rate Matrix for the Simple 2 Amino Acid
State Model

A B

A �aB aB

B aA �aA
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from the active site) that evolve quickly. Rate variation can
be modeled by assuming that a proportion of sites are in-
variant and that the rest are reasonably well modeled using
the flexible gamma distribution (Nei 1976; Yang 1997;
Yang 2002). We use a simpler model for rate variation
where there are 3 different types of locations: invariant
(40% of the sites), slowly varying (40%), and rapidly vary-
ing (20%).

There are strong correlations between the rate of sub-
stitutions at different locations and the types of amino acids
found in these locations (Koshi and Goldstein 1998;
Dimmic et al. 2000; Soyer et al. 2003). For instance, hydro-
phobic residues are more likely to be found in slower
changing interior locations, whereas certain residues (i.e.,
proline, histidine, and cysteine) are especially prevalent
at invariant locations. We can again adjust our simple
model to include different types of locations, where there
is a correlation between the local rates of substitution
and the equilibrium frequencies.

More Complex Model of Protein Evolution

Although instructive, this 2-residue model is overly
simplistic. What happens with a more realistic model in-
cluding some of the factors described above? Can we de-
velop a biologically reasonable rigorously reversible model
consistent with the results of Jordan and colleagues? If so, it
would cast serious doubt on those results because flux
would have been detected where, by definition, none exists.

We have developed models for the process of amino
acid substitution that include different substitution models
for different types of locations (Koshi and Goldstein 1998;
Dimmic et al. 2000; Soyer et al. 2003). In these models,
different substitution matrices are constructed, each appro-
priate for different types of site, called a ‘‘site class.’’ These
models represent the substitution process in real proteins
better (decreased Akaike Information Criterion [Akaike
1978]) than models that neglect such types of site hetero-
geneity. We created a model with 5 different site classes
where each site class was defined by 1) the frequency of
that particular site class in the protein set, 2) the frequency
of each amino acid in that site class, and 3) an overall rate of
substitution for that site class. Given these parameters, a
reversible model was constructed based on the JTT sym-
metric substitution matrix (Jones et al. 1992), and the
probability of the various possible amino acids at the 3 ter-
minal taxa were computed (b1 5 b2 5 0.05, b3 5 0.15). The
various parameters in the model were then adjusted to max-
imize the similarity between the apparent flux from this
model (both with and without correction) and the apparent
normalized flux values from the genome data. The overall
equilibrium distribution of the different amino acids (aver-
aged over all of the site classes) was constrained to the
values described in the JTT model.

Results
Analysis of the Simple 2-State Model of Evolution

Averaging over the various proteins in the genome
data set, Jordan and colleagues observed apparent normal-
ized flux values range from �0.362 for proline to 0.452 for

cysteine, with a root mean squared value of 0.165 (Jordan
et al. 2005a). As shown in figure 2, values obtained from
our evolutionary analyses with the simple 2-state model
were comparable, even though the models used in our cal-
culations were strictly reversible with no net gain of either
A or B. Notably, these systematic biases occurred for
moderate branch lengths.

With a modest amount of rate variation, large flux
imbalances are expected for relatively short branch lengths
(fig. 2). More extreme amounts of rate heterogeneity would
make these effects more apparent at even shorter branch
lengths. This occurs because the faster evolving sites are
more likely to have suffered multiple substitutions even
when the ‘‘overall’’ number of substitutions is low. Even
for our simple model, if equilibrium frequency differences
are associated with rate differences, appreciable flux imbal-
ances are found for branch lengths considerably shorter
than 0.01 (fig. 2).

Some of the potential causes of biases, and a ‘‘correc-
tion’’ to adjust for these effects were previously described
(Jordan et al. 2005b). The observation that their results are
not affected when this correction applied to the genome
data is also claimed as support for their conclusions (Jordan
et al. 2005b). We refute this claim in detail in the discus-
sion, but for now, we note that this correction relies on the
relative number of examples where 3 different residues ex-
ist at the 3 taxa; it is thus inapplicable to the simple 2 amino
acid model described above.

Analysis of the More Complex Model of Protein Evolution

We were able to adjust the parameters of the more
complex reversible site-class model to agree with the

FIG. 2.—Normalized flux difference versus length of branch to sister
taxa for 2 amino acid types. The normalized flux for residue A, dA, was
calculated with b15b251=3b3 for 3 different equilibrium frequencies for
the majority amino acid: pA 5 0.6 (blue), 0.7 (red), and 0.8 (green). Results
are shown for homogeneous (solid lines) or variable (dashed lines) rates
across sites, for which 40% of the sites are invariant, 40% are slowly vary-
ing, and 20% vary 10 times faster than the slowly varying sites. Results are
also shown (dotted red line) when pA 5 0.6 for the invariant sites, pA 5 0.7
for the slowly varying sites, and pA 5 0.9 for the rapidly varying sites, for
an average equilibrium frequency of pA 5 0.7.
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normalized flux values from the genome data, even when
the flux values were corrected as suggested by Jordan et al.
(fig. 3). The correlation coefficient is 0.97 for both the cor-
rected and uncorrected flux. A rigorously reversible model
with realistic parameters can therefore easily mimic the
results obtained by Jordan and colleagues, even when cor-
rections are made that supposedly account for statistical
biases. We found that the measured normalized fluxes were
high for a wide range of sister and outgroup branch lengths
(fig. 4). The results from the genome data are comparable to
the results from our simulations, even for moderate branch
lengths. The results were also surprisingly independent of
the branch lengths to the sister taxa (b1,2).

The simplicity of our model allows us to examine in-
dividual pairs of residues to help understand the source of
the flux reconstruction bias. Consider the relative flux be-
tween proline (pro), the residue supposedly decreasing in
frequency the fastest, and cysteine (cys), the residue sup-
posedly increasing the fastest. The actual number of simu-
lated cys / pro substitutions along the branches from the
common ancestor to the sister taxa exactly equals the num-
ber of pro / cys substitutions, both in total and within each
site class, as expected from a rigorously reversible model.
The observed number of cys / pro substitutions is only
36% of the actual number of such substitutions, whereas
the observed number of pro / cys substitutions is 92% of
the actual number. The result is an apparent flux ratio
of 2.6:1 away from pro and toward cys. The main cause
of the bias is that the majority (58%) of cys / pro changes
occur in noninformative sites, much more often than the
21% of the pro / cys changes that occur in such sites. Es-

sentially all of the cys / pro substitutions (as well as es-
sentially all of the pro / cys substitutions) occurred in
the fastest changing locations, at which cys was much less
common than pro. Because cys has a lower frequency at
these variable locations, it is more probable that it will sub-
stitute to some other amino acid along one of the other
branches on the tree, making the location uninformative.

The flux correction suggested by Jordan’s group has
a relatively small effect, actually ‘‘increasing’’ the apparent
flux ratio to 3.4:1. Why is this so? It is difficult to charac-
terize a heterogeneous substitution model with the limited
data available from only 3 taxa, and thus a necessary as-
sumption in the correction is that there is a single well-
defined frequency for each amino acid. The frequencies
of the various amino acids, however, can depend on the
type of location in the protein, which may be correlated with
the overall rate of substitution. In this case, the highly vari-
able sites have few cys, whereas cys is much more frequent in
the more common invariant sites that contribute heavily to
the average frequency. The frequency of cys at the highly
variable sites is much more relevant than the much higher
average frequency for determining the magnitude of the cor-
rection, and as a result, the correction is too small to account
for most of the missed cys / pro substitutions. Because
a higher proportion of the pro are in the fastest changing
locations, the correction actually does better in finding
the fewer missed pro / cys substitutions, resulting in
the mistakenly increased apparent flux ratio.

Discussion

We have demonstrated that the result of simulations of
simple, fully reversible models of evolution, when sub-
jected to the flux analysis of Jordan and colleagues

FIG. 3.—Apparent normalized flux for the various amino acids as re-
ported by Jordan and colleagues (solid) versus those obtained by applying
their analysis to synthetic data prepared from a rigorously reversible model,
both without (striped) and with (crosshatched) their recommended correc-
tions for correcting statistical bias. The model was based on the symmetric
JTT matrix with 5 site classes, each defined by a relative substitution rate,
a relative fraction of all locations, and the equilibrium frequencies of the 20
amino acids. Overall equilibrium frequencies were constrained to the JTT
values. Branch lengths were b1 5 b2 5 0.05, b3 5 0.15, corresponding to
8% sequence difference between sister taxa and 15% between either sister
taxon and the outgroup. Seventy-eight percentage of the locations where
the 2 sister taxa are different are informative, similar to the values for the
real data analyzed by Jordan and colleagues. Published values represent the
average over all data sets.

FIG. 4.—Root mean square (rms) flux imbalance for the site-class
model as a function of branch lengths. The lengths between both sister
taxa and the internal node (b1 and b2) were equal, and the length between
the internal node and the outgroup (b3) was constrained to be longer. The

flux imbalance was measured as rms values
ffiffiffiffiffiffiffiffi
Æd2æ

ph i
; where the average is

over all residue types. Other details of the model were the same as in figure
3. The corresponding quantity for the genome data was 0.165, which cor-
responds approximately to the turquoise stripe. Because of the different rate
of change for different locations, the center point on the plot (b15b250.10,
b3 5 0.25) corresponds to sister taxa with a sequence difference of 15%,
whereas the outgroup sequence differs from each of the sister taxa by 21%.
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(2005a), yield the erroneous conclusion that the evolution
must have been irreversible. This means that such analyses
are subject to serious and systematic biases. This does not
mean that the conclusions of Jordan and colleagues are nec-
essarily wrong but rather that it is not possible to obtain
definitive evidence from the 3-taxon case and that their data
does not offer meaningful support for their conclusions.

Jordan and colleagues argue that because their results
are not sensitive to branch length, their conclusions cannot
be due to systematic biases. This actually leads to a serious
difficulty for their conclusions: for truly long branches un-
der a simple model, we ‘‘expect’’ differences in reciprocal
substitution probabilities to lead to large erroneous flux
results (on the order of what is observed). If flux patterns
are similar for distantly related organisms and for more
closely related organisms (where the biases should be much
reduced), then the true flux must, coincidentally, have the
same pattern as the bias. This seems improbable, suggesting
another mechanism at work, such as that the percentage of
amino acids different between 2 genomes is not an accurate
measure of the relative number of substitutions at informa-
tive sites. For short branch lengths, the fastest evolving
locations will be most subject to sampling bias and will also
quickly constitute the greatest proportion of informative
sites. As branch lengths get longer and divergence contin-
ues, these rapidly changing sites will quickly experience
multiple substitutions and will become noninformative
and thus not included in the analysis. More slowly changing
locations, however, will join the informative classes and
will have similar forms of sampling bias. The analysis will
be biased toward the faster changing locations when the
branches are short, and toward the slower changing (but
not invariant) locations when the branches are long, buff-
ering the results against changes in branch length. The
result is a compensation effect that can preserve the
appearance of flux imbalance as divergence continues.

With only 3 taxa in each genome data set, it is difficult
to make meaningful estimates of the rate at individual pro-
tein positions, but it is possible to evaluate the variation in
rate among different groups of proteins. For Bordetella, the
most extreme example in these genomes, the average per-
centage difference between the sister taxa is only 0.3%, but
there is a wide range of sequence differences between var-
ious proteins: over 45% of the proteins have no sequence
divergence between the sister taxa, whereas some have over
10% sequence divergence. The amount that each protein
contributed to the overall analysis depended heavily on
the degree of sequence divergence: proteins that were iden-
tical in the 2 sister taxa contributed no data at all to the anal-
ysis, whereas the most diverged 10% of proteins (with 1.8%
average difference between the sister taxa or approximately
b1 5 0.02) contributed almost 40% of the informative sites.
Given typical intraprotein rate variations, it is not difficult to
imagine even higher substitution rates in the ‘‘regions’’ of
the proteins containing the majority of informative sites.
Again, this supports the idea that the calculated branch
lengths are relatively meaningless as predictors of the
expected strength of the bias in flux.

Further arguments were given as reasons that system-
atic biases cannot explain the apparent trends in the geno-
mic data (Jordan et al. 2005a). One argument is that the

correction for multiple substitutions has little effect, but
as is clear from figure 3, this is true for the synthetic data
set as well, for which there are no trends. Another argument,
that the results are similar to those arrived at by looking at
single-nucleotide polymorphism (SNP) databases, is a false
comparison. SNPs represent the pattern of population poly-
morphisms caused by nonlethal (but likely deleterious)
SNPs, most of which eventually will be deleted from the
genetic pool. This pattern is likely to be quite different from
the pattern of long-term accepted amino acid substitutions
that results from the action of purifying selective pressure. It
is reasonable to conjecture that amino acid SNP variants are
more random than accepted substitutions and that those
SNPs that are more likely to be selected against in the future
are also less frequent in the overall protein; these are exactly
the amino acids that will tend to have falsely positive flux
due to reconstruction bias. A third argument, that it is the
‘‘archaic’’ amino acids that are gradually disappearing, also
appears spurious. The biases in flux analyses generally lead
toward the conclusion that there is an overall deletion of the
common amino acids. Common amino acids are likely to be
simpler—if for no other reason than to avoid extra synthesis
work for the cell—and are therefore also most likely to re-
sult from experiments that attempt to recreate the conditions
for the origin of amino acids. There is a need here to avoid
unintended logical circularity: are inferences concerning
the order of amino acid acquisition based on much more
than the genetic code and their current frequencies?

Conclusion

It is likely that amino acid frequencies in various pro-
teins have changed over evolutionary time and that this has
resulted in fluxes. It is difficult to believe, however, that the
direction of gain and loss should be convergent in different
lineages and that it should be the same in fast- and slow-
evolving sites. It is also hard to believe that the rate of gain
or loss of amino acids should be constant over billions of
years of evolution. Such inferences require convincing
evidence and are more easily explained by normal evolu-
tionary processes and statistical biases. Unfortunately,
the genome data used by Jordan et al. (2005a) does not
contain sufficient information to support their conclusions.

To accurately assess and correct for the statistical error
requires an accurate model of the evolutionary process, in-
cluding differences in equilibrium frequencies and substi-
tution rates at different locations in different proteins. A
site-specific model with the required accuracy is impossible
to obtain with only 3 taxa, but site-specific models become
better defined and more useful for predictive purposes as
taxonomic sampling increases(Pollock and Bruno 2000);
such model accuracy for a wide variety of proteins will
be a great benefit of the rapidly increasing number of
complete genomes being obtained by genome sequencing
projects. Evolutionary genomics approaches have great
potential benefits for understanding organismal function,
physiology, and mutation, but there is need to approach
the subject carefully. Casual use of these techniques with-
out careful consideration of inherent pitfalls can be treach-
erous, and claims must be well substantiated from a
statistical viewpoint before they are advanced.
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