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Introduction

There has been a great deal of recent research on
methods for detecting correlated changes in protein
sequence evolution (Altschuh et al. 1987; Taylor
& Hatrick, 1994; Gobel et al. 1994; Neher, 1994;
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The identi®cation of protein sites undergoing correlated evolution (coevo-
lution) is of great interest due to the possibility that these pairs will tend
to be adjacent in the three-dimensional structure. Identi®cation of such
pairs should provide useful information for understanding the evolution-
ary process, predicting the effects of site-directed substitution, and poten-
tially for predicting protein structure. Here, we develop and apply a
maximum likelihood method with the aim of improving detection of co-
evolution. Unlike previous methods which have had limited success, this
method allows for correlations induced by phylogenetic relationships and
for variation in rate of evolution along branches, and does not rely on
accurate reconstruction of ancestral nodes. In order to reduce the com-
plexity of coevolutionary relationships and identify the primary com-
ponent of pairwise coevolution between two sites, we reduce the data to
a two-state system at each site, regardless of the actual number of resi-
dues observed at that site. Simulations show that this strategy is good at
identifying simple correlations and at recognizing cases in which the data
are insuf®cient to distinguish between coevolution and spurious corre-
lations. The new method was tested by using size and charge character-
istics to group the residues at each site, and then evaluating coevolution
in myoglobin sequences. Grouping based on physicochemical character-
istics allows categorization of coevolving sites into positive and negative
coevolution, depending on the correlation between equilibrium state fre-
quencies. We detected a striking excess of negative coevolution (corre-
sponding to charge) at sites brought into proximity by the periodicity of
the a-helix, and there was also a tendency for sites with signi®cant like-
lihood ratios to be close in the three-dimensional structure. Sites on the
surface of the protein appear to coevolve both when they are close in the
structure, and when they are distant, implying a role for folding and/or
avoidance of quaternary structure in the coevolution process.
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Shindyalov et al., 1994; Pollock & Taylor, 1997;
Pazos et al., 1997; Chelvanayagam et al., 1997). It is
expected that the residues at some sites will
strongly affect the evolution of certain other sites
which are close in the three-dimensional structure
of the protein. At such sites, a substitution which
partly destabilizes the protein structure or function
could be corrected by a subsequent (or simul-
taneous) substitution at an adjacent site. For
example, a substitution involving reduction of
volume in the protein core might cause a destabi-
lizing pocket which only one or a few adjacent
residues would be capable of ®lling without strain.
Assuming such relationships exist and are stable
through the evolutionary processes of divergence
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188 Coevolving Protein Residues
and diversi®cation, the record of the relationship
should eventually be detectable in alignments of
extant protein sequences. These coevolved changes
are of interest for understanding processes of pro-
tein evolution. Detection of these changes is also
useful for generating hypotheses of structural/
functional relationships between residues, and if
they are indeed symptomatic of three-dimensional
proximity even a noisy signal might be of aid in
conjunction with other methods for protein struc-
ture prediction from multiple sequences.

Studies attempting to identify correlated changes
have, however, met with only limited success in
identifying pairs of sites which are adjacent in the
three-dimensional structure (although potentially
better results are obtained when applied to dock-
ing; Pazos et al., 1997). There are a number of com-
plications which could account for this failure,
including the possibilities that: (1) distant sites may
be as important as adjacent sites in the compensa-
tory process; (2) the number of sites involved in
compensation is so large that the pairwise corre-
lation signal is too small to be detected; (3) the co-
evolutionary relationships between sites change
too quickly with evolutionary time; or (4) the
methods used are insuf®cient for separating corre-
lation in the evolutionary process (coevolution)
from background noise (false correlation due to
random events). If the ®rst three complications
account for most of the problem, there is nothing
to be done, but the analysis by Pollock & Taylor
(1997) indicated that many current methods may
inadequately discriminate coevolution from back-
ground noise. Thus, improved methodology, par-
ticularly incorporation of phylogenetic tree
structure, may yet identify paired and coevolving
sites considerably better than previous methods.

While the method by Shindyalov et al. (1994)
incorporated tree structure, simplifying assump-
tions were made which may have strongly affected
the results. In particular, they used a phylogenetic
reconstruction method (UPGMA) which performs
poorly in the face of branch length variation, and
also assumed accurate reconstruction of ancestral
sequences using parsimony techniques, which are
known to reconstruct ancestral nodes poorly (Yang
et al., 1995b). Chelvanayagam et al. (1997) used a
novel weighting function to compensate for phylo-
genetic structure, but the statistical effects of this
weighting are largely unknown.

The importance of both the protein structure pre-
diction problem and the more general problem of
understanding the dynamics of the evolution of
protein sequences, and consideration of the limited
success which early analyses have had, make it
imperative that analytical methods for detecting
coevolution should be improved and that these
methods should de®ne precisely what it is that
they are measuring. Here, we develop a simple
maximum likelihood methodology for residue coe-
volutionary analysis, and show that it has the
ability to discriminate coevolution from apparent
correlations which are in fact no more than ran-
dom effects. The method assumes a constant co-
evolutionary relationship between sites, and may
therefore be limited to use with moderately closely
related protein families, but rather than being a
theoretical limitation, this is more a comment on
the possible true nature of coevolution in protein
sequences. The method is designed to measure the
underlying evolutionary relationship between two
sites in a protein, and the degree to which coevolu-
tion between the sites explains the data better than
a model of independent evolution would. The
basis for this method was ®rst developed with
reference to correlations in morphological features
and RNA sequence (Pagel, 1994; Schoniger & von
Haeseler, 1994; Rzhetsky, 1995), and the relation-
ship to these applications is also discussed. We
also develop a precise quanti®cation of the distri-
bution of our test statistic. Since we would like to
know the relationship between structural distance
and signi®cant coevolution, adequate estimation of
random effects is extremely desirable. The method
is tested with speci®c examples where site pairs
are categorized by linear distance along the
sequence and degree of exposure to solvent, and
residues at sites are grouped according to charge
and size. The methods developed are quite general,
however, and these are only some examples of
how it could be used. The method is tested on ver-
tebrate myoglobin sequences, revealing signi®cant
excesses of coevolving sites for proximal residues
and showing a striking signal arising from a-helical
regions near the surface.

Theory

Maximum likelihood methodology

A number of authors have introduced likelihood
methods which explain correlation between sites in
the speci®c case of the evolution of sites involved
in RNA structure (Schoniger & von Haeseler, 1994;
Rzhetsky, 1995; Muse, 1995). The RNA methods
bene®t from the precise knowledge of RNA sec-
ondary structure, and (relative to protein structure)
the strict and concise rules which govern its for-
mation. In particular, a discrete contiguous seg-
ment can be hypothesized to form a ``stem''
structure in which the pairwise relationships
between the sites are pre-de®ned, and the likeli-
hood of correlated relationships between all pairs
in this stem can be tested simultaneously. In the
case of protein evolution, the prediction of struc-
ture is considerably less precise, and the (mostly
unknown) rules which govern its formation are
apparently extremely complicated.

Proteins are built up from a pool of twenty
amino acid residues. These amino acid residues
can occur in any combination among the sequences
at each site, permitting a complexity of coevolu-
tionary relationships between sites which de®es
analysis within the limits of current sequence avail-
ability and computational power. Within a phylo-
genetic context of small divergence levels between
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sequences, however, most sites in a protein gener-
ally exist in a limited number of residue states. It
is also likely that among these states, any coevo-
lution between two sites will have a strong pri-
mary component which has the possibility of
being detected, while other weaker and less
detectable components can initially be ignored.
This component might, for example, be related to
residue charge or size. In this vein, we reduce
the number of states at each site to two (for
example, positively and negatively charged resi-
dues, or large and small residues), and test a
simple model of coevolution between them.

The two-state independent model

We designate the two states A and a, where A
might be for example a set of large residues, and a
the complementary set of smaller residues. Creat-
ing a Markov process model following Felsenstein
(1981), for a single site the instantaneous rate
matrix governing substitution between the two
states (A and a) has both a rate parameter, l, and
an equilibrium frequency parameter pA, such that
the instantaneous rate of substituting state j for
state i (i 6� j) is equal to lpj (where pA � pa � 1).
The matrix of transition probabilities at time t is
then:

Pij�t� � exp�ÿlt� � pi�1ÿ exp�ÿlt�� if i � j
pj�1ÿ exp�ÿlt�� if i 6� j:

�
�1�

The substitution process in this model (as for the
subsequent correlated process) is reversible since
piPij(t) � Pji(t)pj, allowing considerable compu-
tational ef®ciency in later calculations (Felsenstein,
1981).

The pairwise dependent model

A generalized Markov process model of corre-
lated change in pairs of two-state variables was
introduced by Pagel (1994) for comparative anal-
ysis of discrete characters in a phylogenetic con-
text. Here, we use a special case of his model
which is reversible and requires only one more
parameter than when the sites are independent.
If the second site in the pair has two states desig-
nated B and b, with equilibrium frequencies pB

and pb (where pB � pb � 1), then the matrix of
instantaneous transition rates for the paired sites
is:
AB

Q �

AB

Ab

aB

ab

ÿPAB lBpAb

lBpAB=pA ÿP
lApAB=pB 0

0 lApAb

8>>>><>>>>:
where �ij is the sum of off-diagonal elements for
row (residue combination) ij, and lA and lB are
the rate parameters governing substitution at the
two loci, A and B. In this model, there is only
one more degree of freedom than the total in the
two independent models for each site. (There are
®ve free parameters in the dependent model: two
rate parameters, and three independent pij; the pij

must sum to 1, and the pi and pj are completely
constrained by the pij.) This extra degree of free-
dom can be represented by the residue disequili-
brium value, RD � pABpab ÿ pAbpaB, which is
analogous to the standard linkage disequilibrium
measure. Thus, if the equilibrium linked residue
frequencies at the two sites (e.g. pAB) are not
equal to the product of the equilibrium residue
frequencies at each site (e.g. pApB), there is some
degree of dependence between the two sites. The
RD measure can be either negative or positive,
and if the states are assigned according to some
physico-chemical vector of characteristics for each
amino acid, the sign corresponds to either com-
pensation or anti-compensation of the residues.
For example, if there is a greater probability of
negative charge at one site when there is positive
charge at the other, this will lead to compensa-
tory evolution between the sites and negative RD
values.

The substitution probabilities for the coevolving
model can be calculated using P(t) � exp[Qt]. See
Pagel (1994) and Muse (1995) for complete descrip-
tions of such calculations in evolutionary pro-
cesses. Note that although the instantaneous rates
of double transitions are zero, the probabilities of
double substitutions over any time period greater
then zero will be positive. Eigenvectors, inverse
eigenvectors, and eigenvalues necessary for deter-
mining exp[Qt] were calculated using standard
numerical procedures.

Tree topology and model testing

Rather than use the preceding evolutionary
model to construct a phylogenetic tree (which
would in principle be possible), if we are given a
phylogenetic tree we can use it to test the evolu-
tionary model based on likelihood calculations. We
use the methodology by Felsenstein (1981) which
shows how to use matrices of transition probabil-
ities (P(t) above) to calculate ef®ciently (via a
``pruning algorithm'') the likelihood of a model, its
Ab aB ab

=pA lApaB=pB 0

Ab 0 lApab=pb

ÿPaB lBpab=pa

=pb lBpaB=pa

P
ab

9>>>>=>>>>; �2�
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relevant parameters, and a phylogenetic tree con-
sisting of branching order and branch lengths,
given the data (for more details, see Felsenstein,
1981; Pagel, 1994; Muse, 1995). In this study, the
phylogenetic tree was constructed prior to corre-
lation analysis, and only one tree was used. It is
possible that if this tree is incorrect, there will be
some effect on the analysis. The results reported by
Yang et al. (1995a) suggest, however, that as long
as the tree is approximately correct, the effects on
parameter estimation can be minimal.

The likelihood ratio test statistic

The factor involved in assessing whether two
sites are coevolving is to decide whether the data
are signi®cantly more likely under the dependent
model than under the independent model. An
appropriate way to do this is with the likelihood
ratio test statistic, de®ned in the standard fashion
as LR � ÿ 2 ln(LI/LD), where LI and LD are the
maximum likelihood values for the independent
and dependent models, respectively. The larger
this ratio is, the greater the statistical support is for
the dependent model compared to the independent
model. In our situation, the LR statistic is expected
to have a distribution which is asymptotically chi-
squared with one degree of freedom, which would
be an extremely convenient assumption. Monte
Carlo simulations showed, however, that the actual
distribution varied with tree structure, rate of sub-
stitution, and equilibrium state frequencies (results
not shown). Therefore, it is necessary to do con-
siderable calculations to estimate the distribution
of this statistic. Tests of the signi®cance of coevolu-
tion at a site were made using the Monte Carlo
parametric bootstrapping technique developed by
Goldman (1993) from the method described by
Cox (1962), which is applicable to both nested and
non-nested models.

Brie¯y, the required distributions were estimated
by repeated simulation of data under the null
(independent) hypothesis and analysis of these
data under the independent and dependent
models. For estimating LR distributions of real pro-
teins, frequency and rate parameters for the inde-
pendent model must be calculated. In this study,
parameters used were the maximum likelihood
estimators (MLEs) for each site in the protein. For
each replication and each site, data were simulated
as follows: the state of an arbitrary node on the
tree was randomly assigned from the equilibrium
distribution of states (based on the MLEs for the
site), and then the states of the other nodes were
assigned progressively by moving outward from
the initial node, making assignments based on the
probabilities of change (P(t)) calculated as
described above for the independent model, until
all nodes had been assigned. Branch lengths (t)
were taken from the reconstructed phylogenetic
tree. This was repeated until all sites in the protein
had been independently simulated for each replica-
tion. For each replicate, likelihood maxima under
the dependent model were found for each possible
pair in order to get a parametric bootstrap estimate
of the distribution of the likelihood ratio values.
For real proteins, all variable sites in the protein
were re-simulated, and all pairwise comparisons in
the regenerated protein were considered in gener-
ating the LR distribution. This gave 5003 compari-
sons for the size metric simulation, and 2259
comparisons for the charge metric (note that differ-
ent sites can be invariable with respect to different
physico-chemical characteristics). The LR scores are
necessarily positive, since the independent model
is a special case of the dependent model (the
models are nested and hence LD 5 LI), but the
scores were sometimes divided into two sets based
on the sign of RD, de®ned above. The errors in the
cumulative distributions at all points can be esti-
mated by using the variance for a binomial esti-
mate (Rice, 1995), assuming independence of
comparisons, and they are negligibly small for
these numbers of comparisons.

In order to understand the behavior of a statistic
under optimal conditions, it is desirable to create a
situation where the parameters (speci®cally the
site-speci®c rates and equilibrium frequencies and
the tree structure) can be precisely controlled.
When this was done (see below), frequency and
rate parameters and the tree branch lengths and
structure were determined at the outset and were
identical for each site for a given set of conditions.
Rate parameters tested were chosen to cover the
range of values observed in a real protein (i.e.
myoglobin), and 1000 independent pairs were gen-
erated for each parameter set.

Simulated evolution of coevolving sites

It is also useful to assess the power of the meth-
od by controlling the degree of coevolutionary
relationships between sites. To this end, we simu-
lated sequence evolution on phylogenetic trees
according to a coevolving two-state model
(Figure 1). Coevolving residue pairs were created
by ®rst designating ``driver'' sites, which vary ran-
domly and independently according to a de®ned
set of parameters for the Markov process model in
equation (1), as described by Pollock & Taylor
(1997). Each driver site was then associated with a
paired ``dependent'' site, which varied according
to one of two different models depending on the
state at the driver site. We used this model to gen-
erate 1000 coevolving pairs for each set of con-
ditions, which were then evaluated by the
detection method described above. The degree of
coevolution generated can be controlled easily by
adjusting the rates and equilibrium frequencies at
the dependent site. Thus, for example, in order to
allow the sites to appear completely correlated at
equilibrium, the equilibrium frequencies at the
dependent site were 1.0 when the driver site was
in one state, or 0.0 when the driver site was in the
alternative state. The rates of exchange for both
models at the dependent site were varied simul-



Figure 1. Mutation parameters at coevolving site
pairs. A coevolving pair of sites consists of a driver and
a dependent site. Substitution at the driver site is con-
trolled by two free parameters, l and pA. The instan-
taneous probability of substituting residue A for residue
B at a site is lpA dt, while the instantaneous probability
of substituting B for A is lpB dt, where pB � 1 ÿ pA. In
this model, pA and pB are the equilibrium frequencies of
residues A and B. At the dependent site, the instan-
taneous probability of substituting residue C for residue
D is dependent on the state at the driver site. In the pre-
sence of A at the driver site, the controlling parameters
are lA and pDA

, while in the presence of B they are lB

and pDB
.

Figure 2. Testing signi®cance and power. Cumulative
distributions of likelihood ratios for simulated evolution.
Independent sites were simulated along a balanced
evenly branching tree (all branch lengths were equal)
with probabilities of substitution of 0.01 (diamonds), 0.1
(squares), and 1.0 (®lled circles) per branch. These per
branch rates are equivalent to 0.3, 3.0 and 30.0 substi-
tutions per site over the entire tree, thus covering most
of the range of rates observed in the myoglobin example
below. Independent sites were also simulated along a
balanced tree with a substitution rate of 0.1 along
internal branches and 0.011 along the terminal branches
(cross hatches), thus summing to 2.18 probable substi-
tutions per tree. Coevolving sites were simulated along
a evenly balanced branching tree with probability of
substitution per branch of 0.1 at the driver site and 0.1
at the dependent site, or 3.0 substitutions per tree (open
circles; see the text for de®nitions of driver and depen-
dent sites). Also shown for comparative purposes is a
chi-squared distribution with one degree of freedom
(thick line, no symbol).
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taneously. Coevolution is most detectable when
these rates are high (Pollock & Taylor, 1997).
Results

Background distribution and detection of
simulated coevolution

When sites were randomly evolved on a 16-
taxon, evenly branching, balanced tree, it was clear
that the distribution of LRs for pairs of such sites
did not always closely match the chi-squared dis-
tribution with one degree of freedom, which is
included for comparative purposes (Figure 2). The
distributions in this Figure are presented as
(reverse) cumulative distributions, so curves rep-
resent the percentages of sites with the speci®ed or
greater LR value. This enables one to easily read
the LR cutoff point where the remaining prob-
ability falls below a particular critical value (a).
When the number of substitutions per branch was
moderately low (0.1), the cumulative percentage in
the simulations was up to 50 % greater than for the
theoretical asymptotic chi-squared distribution. For
larger substitution rates per branch (1.0), the simu-
lated cumulative distribution matched the chi-
squared distribution much more closely, but for
the smallest rate (0.01) the cumulative distribution
of LRs was erratic relative to the chi-square. This
second effect occurred not because of limited
sampling, but because for smaller rates it is unli-
kely that more than one substitution will occur
over the entire tree, and therefore the number of
likely sequence patterns is limited. Large differ-
ences in the given tree structure were seen to have
large effects on the cumulative distributions of like-
lihood ratios for independently evolving sites. For
simulations on a tree with the same structure as
before, and with internal branch lengths of 0.1, but
with terminal tips one-ninth of the length of the
deeper branches, the cumulative distribution
departed even further from the chi-squared distri-
bution. The effect with this tree was particularly
noticeable for large likelihood ratios (e.g.
>w2

1,95 % � 3.84), where the observed cumulative
percentage can be two to three times that for the
evenly branching tree. Thus, use of a chi-squared
distribution in signi®cance testing as an approxi-
mate substitute for the real LR distribution is not
generally adequate. Note that here we are addres-
sing the effect of large and consistent differences in
relative branch lengths of the true or given tree,



Figure 3. Maximum likelihood estimators. The distri-
bution of the maximum likelihood estimators of the
(a) rate and (b) equilibrium frequency parameters for
myoglobin sites segregated by size (S) and charge (Q).
There were 104 sites which could be differentiated by
size and 70 sites which could be differentiated by
charge. Sites invariable with respect to each physico-
chemical metric were not included. Each of these estima-
tors are used for simulating independent evolution of
sites in myoglobin in order to estimate the background
distribution of LRs for the 5356 size-segregated and
2415 charge-segregated pairwise comparisons evaluated
in this study. For size-segregated frequencies, the mean
was 0.54(�0.03) standard errors, while for charge-segre-
gated frequencies it was 0.54(�0.04). For size-segregated
rates, the mean was 21.2(�5.0), with a skew of
4.61(�0.24). Rates are probabilities of substitution per
site over the entire tree. For charge segregated rates, the
mean was 14.6(�3.8), with a skew of 4.97(�0.29).
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rather than potential errors in tree topology and
branch length reconstruction, as discussed earlier.

Simulations showed, however, that the power of
tests using the likelihood ratio statistic can be quite
good. Figure 2 shows the cumulative distribution
of sites which had coevolved according to the
model described earlier, with l � lA � lB � 1.0,
and most pairs have signi®cant LRs. On the curve
for independently evolving sites with a rate of 1.0,
a signi®cance level (a) of 0.05 is achieved at LR
approximately 4.6. The power (fraction of coevol-
ving sites above this level, b) for these conditions
can be read from the uppermost curve of Figure 2,
and is 0.86. For a � 0.025, b is 0.79; for a � 0.01, b
is 0.71; and even for a � 0.001, b is still 0.52. Pre-
vious studies have shown that the observed corre-
lation levels at coevolving sites are much more
sensitive to lA and lB than l (Pollock & Taylor,
1997), and this is also the case here: increasing lA

and lB leads to perfect correlation in most cases,
while decreasing lA and lB leads to reduced
power (data not shown). It must be remembered,
however, that these signi®cance and power levels
apply to tests of individual pairs of sites, while in
real applications the number of comparisons per-
formed can easily number in the thousands, so the
effect of multiple comparisons has to be con-
sidered.

Coevolution and structure in myoglobin

Site pairs in vertebrate myoglobin were divided
into those pairs which were separated by either
®ve or fewer residues in the primary sequence, or
by six or more residues, and likelihood ratios were
calculated for each pair. The division was made
because a question of interest is whether signi®cant
coevolution between sites can be linked to distance
in the three-dimensional structure for prediction
purposes, and for this it is not helpful to include
sites adjacent in the primary sequence. As sites
close in the primary sequence are likely to be close
in the three-dimensional structure, and are there-
fore likely to have coevolved in a way leading to
increased LRs, it is interesting to analyze this pre-
dictable effect separately. Residues at each site
were partitioned into two states according to either
a size or a charge metric, where the partition point
was determined by the mean value of the metric at
that site. These sites were further divided into posi-
tive and negatively coevolving sites according to
the sign of the coevolution measure, RD. Pairs sep-
arated by six or more residues in which both resi-
dues were buried or exposed were also analyzed
separately.

The MLE rate and frequency parameters were
estimated for each site when segregated by both
size and charge (Figure 3), and these MLE values
were used to simulate independent evolution at
each differentiable site (104 sites for size, 70 sites
for charge). For those site pairs categorized by size
and separated by six or more residues (5003 com-
parisons), the (reverse) cumulative distributions of
LRs from the simulation match the observed distri-
butions more closely than does the chi-squared dis-
tribution with one degree of freedom (Figure 4).
For sites separated by six or more residues and
categorized by charge (2259 comparisons), the
simulations again matched the true curves more
closely than the chi-squared value for large LR
values (Figure 5). Thus, reliance on the chi-squared
distribution for signi®cance levels would lead to
large overestimates of the excess number of coevol-
ving sites for all standard signi®cance levels (0.05
and below). This con®rms that for protein data, in
a situation where a real tree structure and the
effect of correlation between multiple site pair
comparisons is explicitly accounted for, the chi-
squared approximation is unreliable. Therefore,



Figure 4. Cumulative distributions of positive and negative coevolution: size. The reverse cumulative probability
distribution of LR values is shown for sites with positive (continuous line) and negative (broken line) RD values
when segregated according to size, along with the simulated expectation (dot-dashed line) and the chi-squared distri-
bution with one degree of freedom (dotted line). Solid horizontal lines correspond to the 5 % and 10 % cutoff levels
and the right graphs are simply enlargements of the left graphs to better visualize the region where these lines inter-
sect the data curves. (a), (b) The distribution for those sites separated by six or more residues; (c), (d) sites separated
by ®ve or fewer residues.
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critical values for signi®cance levels were hence-
forth determined from the simulations for the
appropriate physico-chemical metric. If the LR
values for the 5356 total size and 2415 total charge
comparisons on which the simulation distributions
are based were independent, the error in these
cumulative distributions at the 0.05 cutoff would
be 0.0030 for size, and 0.0044 for charge. Since
there is some correlation between these compari-
sons, the error could be somewhat larger, but
repeated simulations did not appear qualitatively
different (data not shown).

Table 1 shows the observed numbers of posi-
tively and negatively coevolving site pairs, and the
numbers expected beyond critical LR values deter-
mined as outlined above. The signi®cance of the
bias (positive to negative ratio different than 1.0)
and the deviation from the numbers expected at
the 0.05 and 0.01 signi®cance levels were evaluated
with the chi-squared test for goodness of ®t. The
bias in positive versus negative RD values for sites
separated by six or more residues was found to be
non-signi®cant for the charge grouping, but extre-
mely signi®cant for the overall size grouping, and
signi®cant for both the buried and exposed size
groupings. Assuming that the simulated cumulat-
ive distributions are an accurate re¯ection of the
true distributions, there are extremely signi®cant
excess numbers of large LRs for pairs separated by
six or more residues for both the size and charge
metrics (Table 1). For example, with the charge
metric we expect 5 %, or 113, of the 2259 pairs
tested to exceed the 0.05 signi®cance cutoff of
4.813, but in fact we observe 158 such pairs. For
the size metric, we expect 250 pairs over the 5 %
cutoff (4.880), but we observe 319. Excess numbers
are also very or extremely signi®cant for the 0.01
signi®cance level. The pairs with LR values above
the 0.05 and 0.01 cutoff were not signi®cantly
biased towards either positive or negative coevolu-
tion. These excess numbers of pairs presumably
occur due to sites which have been coevolving, but
such sites cannot be separated from those sites
which have likelihood ratios beyond the signi®-
cance threshold due to chance, since there were so
many comparisons made. For example, with the



Figure 5. Cumulative distributions of positive and negative coevolution: charge. The reverse cumulative probability
distribution of LR values is shown for sites showing positive and negative RD values when segregated according to
charge. The lines and labels are as de®ned in the legend to Figure 4. (a), (b) The distribution for those sites separated
by six or more residues; (c), (d) sites separated by ®ve or fewer residues.
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charge metric, there are an extra 45 pairs above the
0.05 cutoff, but the total of 158 pairs includes 113
pairs which are probably above the cutoff due to
random effects.

The results from the sites separated by ®ve or
fewer residues in the primary sequence are more
striking. While the excess numbers of size-segre-
gated LR values are moderate for this group, the
excess numbers of negatively coevolved charge-
segregated sites with large LR values are three to
ten times what is expected by chance (see Table 1
for excess numbers of sites with LR values above
the 0.05 signi®cance level). This indicates that
negative, or compensatory, coevolution is playing
an important role for these site pairs, and that this
method is sensitive to detecting such correlation
when it exists and is strong. For both positive and
negative coevolution, the size metric produces only
a slight excess of pairs with large LR values. This
indicates that while size interactions may play
some role in the evolution of proteins, they are
neither necessarily strong nor consistent in a pair-
wise fashion on the time scale of the myoglobin
tree, even for closely linked pairs.
Distance distributions of significant pairs

Since there are excess numbers of site pairs with
likelihood ratio values above the 0.01 and 0.05 cut-
offs for both the size and charge segregation pro-
cedures, it is of interest to see whether a close Ca

distance between these pairs is associated with
these excesses. This evaluation is possible here
because the three-dimensional structure of myoglo-
bin is known, but has implications for when the
method is applied to proteins of unknown struc-
ture. For both the size and charge groupings, there
is an apparent excess of negatively coevolved pairs
which are close in the three-dimensional structure,
although positively coevolved close pairs are in
apparent excess only for the size grouping
(Figure 6). The excess numbers below 20 AÊ are
signi®cant in these three cases (data not shown).
When the buried and exposed groupings were ana-
lyzed separately (Figure 7), the number of paired
sites closer than 20 AÊ was signi®cant only for the
exposed pairs segregated according to size. These
last comparisons generally suffer from small num-
bers, however, and were not further divided into



Table 1. Counts and chi-squared test values for myoglobin structural categories

Category LR a Observed (�) Bias w2
[1] Excess w2

[1]

Q6� All 2259(1149/1110) 0.673 n.a.
(charge vector, separated by six or more residues) 0.05 158(85/73) 0.911 18.91***

(14.78***/4.96*)
0.01 36(19/17) 0.111 8.041**

(5.28*/2.90)
Q6 � bur 0.2 All 253(114/139) 2.470 n.a.
(buried residues, score > 0.2) 0.05 17(6/11) 1.471 1.575
Q6 � exp 0.2 All 962(505/457) 2.395 n.a.
(exposed residues, score < 0.2) 0.05 74(42/32) 1.351 25.45***
Q1-5 All 158(72/84) 0.923 n.a.
(separated by < �five residues) 0.05 22(4/18) 8.91** 26.49***

S6� All 5003(2632/2371) 13.62*** n.a.
(size vector, separated by six or more residues) 0.05 319(167/152) 0.705 19.95***

0.01 76(39/37) 0.053 13.62***
(7.86*/5.77*)

S6� bur 0.2 All 918(496/422) 5.965* n.a.
(buried residues, score > 0.2) 0.05 58(32/26) 0.621 3.358

0.01 18(6/12) 2.000 8.560***
S6 � exp 0.2 All 1590(841/749) 5.323* n.a.
(exposed residues, score < 0.2) 0.05 95(48/47) 0.011 3.181

0.01 14(9/5) 1.143 0.253
S1 ÿ 5 All 353(178/175) 0.025 n.a.
(separated by <�five residues) 0.05 26(17/9) 2.46 4.158*

Chi-squared tests for positive/negative bias and excess above random expectation for observed and expected counts of positively
and negatively correlated pairs when divided by partitioning vector, signi®cance of likelihood ratio, and by exposure to solvent.
Signi®cance levels are indicated by: * < 0.05, ** < 0.01, *** < 0.001, n.a. not applicable. Other values are non-signi®cant.
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positively and negatively coevolved subcategories
for that reason. Nevertheless, the trend in each
grouping is towards more close pairs than
expected. There are many more exposed charge
pairs than expected beyond the 0.05 cutoff, and the
unusual distribution in Figure 7(d) indicates that in
this case there are excesses of both close and dis-
tant sites. The close sites are presumably due to
direct charge interactions, but the distant sites are
more dif®cult to explain: possibilities include main-
tenance of an isoelectric composition (or a dipole
moment) across the molecule, avoidance of self-
complementarity (and thus polymerization) at
opposite ends of the molecule, or avoidance of
compatibility of distant secondary structural seg-
Figure 6. Distance frequencies for myoglobin site
pairs. Frequency distributions for the Ca distances
between pairs of sites in myoglobin are shown for dis-
tance bins of 5.0 AÊ . Distributions for all size and charge
segregated pairs are shown along with the respective
distributions of negatively (neg) and positively (pos)
coevolved pairs with LR values greater than either the
0.01 cutoff (size), or the 0.05 cutoff (charge). Also shown
are the predicted background frequency distribution of
sites with LRs greater than the appropriate signi®cance
value (bkgd). See Table 2 for numbers in distributions.
ments which would interfere with the folding pro-
cess.

Closely linked pairs and secondary structure

For residues separated by one to ®ve residues in
the primary sequence, the appropriate null hypoth-
esis is that there will be no association between the
degree of separation and the amount of coevolu-
Figure 7. Distance frequencies for exposed and buried
site pairs. Frequency distributions for the Ca distances
between pairs of sites in myoglobin which are (a), (c)
buried or (b), (d) exposed are shown for distance bins of
5.0 AÊ . Distributions for all buried and exposed (a), (b)
size and (c), (d) charge segregated pairs are shown
along with the respective distributions of buried and
exposed pairs (bur.sig and exp.sig) with LR values
greater than either the (a), (b) 0.01 cutoff (size), or the
(c), (d) 0.05 cutoff (charge). Predicted background distri-
butions (bkgd prediction) and numbers are as in Table 2.



Table 2. Counts of charge (Q) segregated sites by
separation along sequence

Separation
1 2 3 4 5

Neg Q, LR > 4.0 2 2 8 8 4
Total Q 31 27 35 36 27
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tion between sites. Thus, if the degree of separation
(and therefore secondary structure) has no effect,
residue pairs with LRs greater than any particular
probability cutoff should be evenly distributed
among the different separations. Charge-segre-
gated pairs with negative RD values and LRs
greater than 4.0 (which are in extremely signi®cant
excess) have many more separation values of three
and four, however, than values of one, two or ®ve
(Table 2). When testing the general hypothesis that
there is any (unknown) effect of degree of separ-
ation, this observation is not signi®cant at the 0.05
level (for a 2 � 5 G test of homogeneity, i.e. a gen-
eralized likelihood ratio test of the goodness of ®t
of a model for multinomial cell probabilities (Rice,
1995) with four degrees of freedom, G4 � 6.44). The
separation difference peak at three and four is
strongly coincidental with the periodicity (3.6) of
an a-helix, however, and in this all-helical protein
the hypothesis that coevolutionary interactions
should be more common between residues separ-
ated by three or four residues is a structurally
reasonable hypothesis. A 2 � 2 G test of homogen-
eity between separations of one, two or ®ve, and
separations of three or four, is signi®cant at the
0.05 level (G1 � 5.14). Note that this effect is
entirely different from the a-helix hydrophobicity
periodicity which is the basis of many current
structure prediction methods. The a-helix period-
icity effect causes a slight bias towards separation
distances of three or four in the totals before any
application of the LR test. This bias is not signi®-
cant in a 2 � 2 G test of homogeneity (G1 � 1.95),
and regardless is fully accounted for in the hom-
ogeneity tests. An interesting visual observation is
that these coevolving pairs appear more often on
the ends of a-helices, and near the surface of the
protein (as would be expected for charged resi-
dues), although this was not statistically quanti-
®ed.

Discussion

The likelihood methods developed here have
good statistical power to detect coevolved residue
substitution in pairwise comparisons in simu-
lations, and both positive and negative coevolution
are detected in myoglobin sequences. The excess
number of site pairs undergoing coevolution must
be estimated by simulation. In the myoglobin
example the strongly coevolving sites tend to be
closer in the three-dimensional structure, and there
are statistical excesses of large LR values. Sites
which are adjacent in the linear sequence have a
slight bias towards positive size coevolution. There
is also a large excess of negatively coevolving sites
with large LR values, and the linear separation of
the excess sites corresponds to the periodicity of an
a-helix. Preliminary analysis of vertebrate lactate
dehydrogenase sequences suggests that the stron-
gest coevolutionary signal among sites separated
by less than ®ve residues is also from the a-helices
(data not shown), indicating that this may be a
general phenomenon. In addition to their general
interest for understanding the processes of protein
evolution and generating hypotheses of structural
interactions between residues, these observations
might prove useful in both secondary and tertiary
structure prediction. For example, Pazos et al.
(1997) have had some success predicting domain
and dimer contacts using a simple methodology
with low power for detecting coevolution (Pollock
& Taylor, 1997), and thus the promise of enhanced
signal detection of this kind is very encouraging.
Including phylogenetic tree information appropri-
ately has been helpful in other multiple sequence
analysis/protein structure contexts (Goldman et al.,
1996), and this approach appears to be bene®cial
here, too. Also, buried a-helices are generally hard
to detect by other means (Benner, 1996), and so a
strong signal which is often at the ends of such
helices would be extremely helpful. In a compari-
son of all sites in a single protein, the signal is not
strong enough to de®nitively overwhelm the back-
ground, so that (based on the parametric estimates
of the background) even for the example of nega-
tive charge coevolution at separation distances of
three or four an individual pair has only about a
75 % probability of being due to a coevolutionary
relationship. The problem is worse for the more
distant comparisons, since the number of compari-
sons, and therefore the number of false positives
due to background noise, goes up with the square
of the number of sites included. With the methods
developed here, the strength of the signal is
directly estimated, and since the coevolutionary
signal is independent of the signals used by most
current methods, it can potentially be used to aug-
ment methodologies which can make use of a
noisy signal; for example, distance geometry
(Aszodi et al., 1997), or sequence/structure thread-
ing (Jones et al., 1992; Taylor, 1997).

The tests performed here were based on pre-con-
ceived notions of the charge and size relationship
of protein residues. There is no guarantee, how-
ever, that these physico-chemical properties are
those which drive coevolution between residues in
the protein structure. This methodology can evalu-
ate coevolutionary relationships based on any par-
tition of the residues into two groups, and thus
there is a great deal of ¯exibility to search for par-
tition types which are particularly indicative of
proximity in the three-dimensional structure.
Results here and in previous studies indicate that
there is a real signal to be detected, and that it can
prove useful in protein structure prediction. The
greatest problem is separating this signal from



Figure 8. Phylogenetic tree of myoglobin sequences
used in this study. The scale bar corresponds to molecu-
lar distance, i.e. the average probability of substitution
per site for the branch length shown.
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noise inherent in such a huge multiple compari-
sons analysis. The method described here uses
evolutionary information to help in this separation,
and quanti®es the result. Future study will be
directed towards determining the partitions which
carry the greatest signal to noise ratio. These will
also be useful in giving structural meaning to the
coevolutionary process.

Unlike previous methods (Pollock & Taylor,
1997), the method developed and analyzed here
will not become biased by, and indeed is able
make statistical use of, similar sequences. It allows
for tree structure, including variation in branch
length, in a statistically robust fashion, and does
not assume precise reconstruction of ancestral
nodes. A major assumption of this kind of analysis
(and any other coevolutionary/correlation analy-
sis), that coevolutionary relationships are static
with time, is more likely to be upheld in trees with-
out extensive pairwise divergence levels. This is
important, since such recent trees must include
many sequences in order to provide the necessary
information for coevolutionary analysis, and may
include many closely related taxa. More deeply
branching trees may still remain useful for detect-
ing correlation in the relatively conserved protein
core, and may be necessary in order to get enough
evolutionary change to detect a signal at the slow-
evolving core sites. Such questions of evolutionary
sequence change versus evolutionary structural
change and their effect on coevolution are import-
ant topics for future study.

Materials and Methods

The real data analysis example of the relationship
between coevolution and structural features was carried
out on an alignment of tetrapod myoglobin sequences.
This family began with 67 sequences collected from the
TREMBL databank (Bairoch & Apweiler, 1998), which
were aligned using MULTAL (Taylor, 1998) followed by
adjustments by eye. Phylogenetic trees were created
using the PROTDIST and NEIGHBOR programs from
the PHYLIP computer package (Felsenstein, 1993), and
the resulting tree was trimmed to remove branches
which joined the tree in con¯ict with known tetrapod
phylogeny, and to avoid long unbroken branches when-
ever possible. The remaining 42 aligned sequences were
used in all further analysis, and this alignment is
available at http://ib.berkley.edu/labs/slatkin/david/
MYOG/. The SwissProt abbreviations for these sequences
are: MYG PAPAN, CASFI, CALJA, PONPY, LAGLA,
ORYAF, PANTR, CTEGU, ROUAE, TUPGL, PROGU,
SPAEH, LAGMA, ZALCA, LUTLU, MELME, ONDZI,
OCHPR, PHOPH, HORSE, INIGE, ZIPCA, KOGSI,
ORCOR, BALPH, ELEMA, SAISC, SHEEP, ALLMI,
APTFO, CHICK, GRAGE, BOVIN, CANFA, DIDMA,
TACAC, MACRU, VARVA, MOUSE, ORNAN, and
1mbd PDB and 1lhs PDB. The phylogenetic tree used is
shown in Figure 8. Available myoglobin sequences more
than 98 % similar to the sequences listed were not
included in the analysis. The three-dimensional structure
used for all distance calculations was from sperm whale
(1mbd; resolution � 1.4 AÊ ), and was obtained from the
Brookhaven Protein Data Bank (Bernstein et al., 1977).
Reading of PDB structures and three-dimensional dis-
tance calculations was performed using subroutines
kindly provided by A. Aszodi. Division of residues into
buried and exposed was made using a score of 0.2 in the
CONESCORE program from DRAGON (Aszodi et al.,
1997). Expected background frequency distributions of Ca

distances (the distances in angstroms between the Ca

atoms of each residue pair) were calculated by multiply-
ing numbers from the overall background distribution by
the number expected beyond a signi®cance cutoff, and
dividing by the number actually observed.
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