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The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular
evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method.
Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates
of the ancestral protein’s properties. To assess the accuracy of ancestral protein reconstruction methods, we performed
computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation,
and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target
structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the
properties of ‘‘ancestral sequences’’ inferred by maximum parsimony, maximum likelihood, and Bayesian methods.
Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a ‘‘best
guess’’ amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses
less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum
parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply
because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly
overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions
regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.
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Introduction

With the development of extensive databases of genetic
sequences and sophisticated phylogenetic inference methods,
the reconstruction of putative ancestral genetic states is an
increasingly common technique. Ancestral reconstruction
has been used to estimate the properties of ancestral genomes
[1], genes [2], and proteins [3–8]. These methods allow the
study of adaptive selection, functional divergence, and
evolutionary pathways, in a manner not possible without
accurate knowledge of the past. Inferred protein sequences
may be synthesised and experimentally characterised, allow-
ing the deduction of historical conditions [6, 9]. The proper-
ties of the inferred ancestral protein can also be compared
with the properties of modern proteins, leading to a better
understanding of evolutionary processes, both for specific
protein families and in general.

Increasingly sophisticated statistical methods have been
developed to obtain more accurate inferences; two popular
methods are maximum parsimony (MP) and maximum
likelihood (ML). The MP method was the first used for
ancestral protein sequence reconstruction [7] but is based on
an extreme simplification of the evolutionary process.
Because of this simplification, MP suffers from drawbacks
such as the inability to resolve ambiguous, equally parsimo-
nious reconstructions and an inability to provide statistically
robust measures of confidence. A currently popular alter-
native method of reconstruction involves ML, where the
ancestral states are chosen that represent the highest a
posteriori probability at that position [10,11]. An advantage
of the ML method is that it uses an explicit model of the

substitution process, in contrast to the implicit model that
lies behind MP approaches; the substitution model, however,
is a phenomenological construct and does not provide a
realistic description of the evolutionary process. A third
approach, Bayesian inference (BI) is a more recent develop-
ment in phylogenetic analysis [12–14] in which a quantity of
interest is viewed as a posterior probability distribution,
rather than a point or ‘‘best’’ estimate, as in MP and ML, and
where an explicit summation over different possibilities for
the nonessential parameters is performed. In particular, BI
ancestral reconstruction methods have been developed that
sample over trees, branch-lengths, and substitution models
[15,16]. The idea of creating ancestral sequences by sampling
amino acid residues over posterior distributions has not been
popular, partly because it is counterintuitive to many people
not to choose a best estimate but also because the use of BI
would seem to require the synthesis and characterisation of
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multiple proteins. (To avoid confusion, it is important to note
here that when we refer to MP, ML, and BI techniques, we are
referring to the MP, ML, or BI approach to determining the
ancestral state at each position in the protein; the choice of
method for determining phylogenetic relationships is a
separate issue.)

The accuracy of any ancestral reconstruction, and there-
fore the degree of confidence in the results, depends upon
both the precision and the systematic error or bias in the
reconstruction. Bias is particularly important to avoid, since
it can easily lead to the appearance of spurious trends in
functional inference. For example, an ML reconstruction
study by Gaucher et al. [6] suggested that mesothermophilic,
thermophilic, and hyperthermophilic bacteria all evolved
from ancestral thermophiles, a conclusion based on the high
thermostability of their reconstructed ancestral proteins. If
ML reconstruction accurately estimates thermostability, the
results of these studies are likely to be valid. In contrast, if
statistical biases result in an overestimation of themostability,
the conclusions made in this study may be incorrect, and if
ML reconstructions underestimate thermostability, the con-
clusions may be even stronger than they at first appeared.

It has been suggested that reconstruction errors can be
thought of as similar to random mutations; as random
mutations are generally deleterious, reconstruction methods
should have a bias toward reducing or eliminating the
‘‘performance’’ of a protein, presumably resulting in the
underestimation of ancestral biophysical properties such as
stability [8]. Although this assumption might be initially
appealing to a casual reader, it is questionable whether a valid
connection can be made between random mutations and
errors in reconstructions, as the available variants are
necessarily acceptable in a thermodynamic and functional
context; the same cannot be said for random mutations.

How can this issue be addressed? Unfortunately, direct
comparison of the results of ancestral reconstructions with
the actual ancestral sequences is difficult. The recovery of
ancestral DNA fragments from amber, ice, or peat has been
limited, and susceptible to its own inaccuracies and time
limitations. Known phylogenies and ancestors have been
generated using artificial evolution experiments [17,18], but

this approach has not yielded sufficient data for a detailed
analysis of our question. Krishnan and colleagues [2] found
that strong compositional trends suggested by both ML and
MP reconstruction of primate mitochondrial DNA were not
supported by BI, and were easily explained by methodological
biases. In their study, inaccurate reconstructions were also
shown to have potential deleterious effects on tRNA structure
(and presumably function). Less has been done on the
accuracy of protein reconstruction methods. As an alter-
native to direct comparison with known ancestral sequences,
it is possible to perform in silico evolutionary simulations,
enabling generation of larger data sets and more thorough
testing of the reconstruction method, and we take that
approach here.
Protein evolution occurs as an accumulation of random

mutations in a polymorphic population, where the effect of
various mutations may be different at different locations and
may change over time, and where fixation probabilities
depend upon the effects of the variants on the properties of
the resultant proteins and upon the relative fitness of each
variant in the population in which it arises. Ancestral
reconstruction, conversely and necessarily, relies on phenom-
enological models of the sequence changes that occur as a
result of this evolutionary process, where a diverse popula-
tion is represented as a fixed sequence and locations are
generally assumed to evolve independently with a pattern
that is (with the exception of a distribution of absolute rates)
the same for all locations at all time. In this paper, we
simulate the evolution of a population of proteins as they
undergo nearly neutral evolution with purifying selection,
including the processes of divergence and speciation, based
on a realistic phylogenetic tree obtained for a set of RNase A
gene sequences. Proteins are modelled using an off-lattice
framework and represented as sequences of 300 amino acid
residues whose fitness depends on the probability of folding
into an arbitrarily predetermined target structure. While the
model of the protein thermodynamics is necessarily simpli-
fied, the model does capture the idea of stability being
composed of a large number of small, multibody interactions
distributed throughout the molecule. We then applied
standard analytical tools based on current phenomenological
models to perform the ancestral reconstruction of internal
nodes using MP, ML, and BI approaches.
As we recorded the evolutionary process as it occurred, we

were able to compare thermodynamic properties of the
reconstructed proteins with those of the actual ancestors. As
proteins were preequilibrated with respect to sequence,
fitness, and composition before the simulations began,
consistent biases in reconstruction were easily discerned as
deviations from equilibrium properties. Although ML pro-
duces the most accurate sequences, the MP and ML methods
result in significant errors in the estimation of the stability of
ancestral proteins. Surprisingly, MP and ML generally over-
estimate thermodynamic stability. This counterintuitive result
may be due to general statistical features of ancestral
reconstruction, and is explained in detail below. Bayesian
methods result in the smallest and most unbiased errors in
stability, even when BI is used to produce a single sequence,
with no increase in experimental effort. These results
indicate that errors in reconstruction cannot be considered
similar to random mutations and that the conclusions based
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Synopsis

It is now possible to apply computational methods to known
current protein sequences to recreate the sequences of ancestral
proteins. By synthesising these proteins and measuring their
properties in the laboratory, we can gain much information about
the nature of evolution, better understand how proteins change and
adapt over time, and develop insights into the environments of
ancient organisms. Unfortunately, the accuracy of these reconstruc-
tions is difficult to evaluate. We simulate protein evolution using a
simplified computational model and apply the various reconstruc-
tion methods to the sequences that arise from our simulations.
Because we have the complete record of the evolutionary history,
we can evaluate the reconstruction accuracy directly. We demon-
strate that the reconstruction procedures in common use may have
a bias toward overestimating the properties of these ancestral
proteins, opposite to what has been assumed previously. An
alternative method of creating these sequences is presented,
Bayesian sampling, that can eliminate this bias and provide more
robust conclusions.
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on previous MP and ML reconstruction studies may be
misleading and should be reevaluated.

Results

Protein evolution was modelled in populations of 1,000
where fitness was based on the fraction of time that the
protein would be folded in its target structure in thermody-
namic competition with a large ensemble of competing
structures. One hundred different simulations were per-
formed, of which the results from 84 were analysed. After
preequilibration, the proteins had an average stability of
approximately �2.5 kcal/mol, corresponding to approxi-
mately 98.5% of the proteins being folded. As the maximum
possible folded fraction is 100%, the fitness landscape at this
point is close to flat, with mutational pressure due to the
greater number of destabilising mutations compared to
stabilising mutations counteracting any remaining selective
pressure for increased stability. In other words, equilibration
here means that the sequences were in mutation/selection
balance, and there was no subsequent directional change in
fitness as the simulations proceed. Subsequently, the stabil-
ities of the evolving proteins were approximately constant;
substitutions that slightly increased protein stability were
generally preceded by or followed by substitutions that
slightly decreased stability, as expected for nearly neutral
evolution under purifying selection [19]. Amino acid compo-
sition of the evolving proteins was also approximately
constant after preequilibration.

In each replication of the computational experiment,
populations of proteins duplicated and diverged according
to a phylogenetic tree reconstructed using RNase A sequen-
ces. The protein sequences from the terminal nodes of these
simulations were used to reconstruct sequences at the
internal nodes using MP, ML, and BI approaches. The
substitution models and reconstructions were obtained using
only the most common sequences at the end of the
simulations, and although rates may vary, locations were
assumed to evolve independently with a pattern that was the
same for all locations at all times.

The ML method was the most accurate at estimating the
true ancestral sequences on a site-by-site basis, with 93.7 6

4.5% of all nodes at all sites correctly reconstructed. (A 6

value represents the standard deviation of the accuracies of
the ensemble of reconstructions. The uncertainty in the
average accuracy is 0.4%.) This greater accuracy for ML is
expected, since by definition ML chooses the most likely
amino acid at every position. BI, which samples from the
reasonably likely choices, was only slightly less accurate, with
an average accuracy of 92.3 6 5.2% (uncertainty in average
accuracy of approximately 0.5%). MP, which does not include
an explicit model of substitution, was less accurate than the
other two methods, with an accuracy of 89.8 6 6.9%
(uncertainty in average accuracy of approximately 0.8%).
Of the locations, 91.7% were predicted correctly both by ML
and by BI. An additional 2.0% were predicted correctly by
ML but not by BI, while only 0.6% of all locations were
correctly predicted by BI but not by ML. Of the 5.6%
predicted correctly by neither method, most of the time
(4.3%) both methods made the same error. Overall, BI and
ML predictions were identical for 96.0% of all locations.

Although it might be argued that MP is at a disadvantage,

since the likelihood-based methods benefited from abnor-
mally abundant and high-quality data to define the sub-
stitution model, it is also true that the model used is actually
incorrect, since it takes neither site-specific model variation
nor nonstationarity into account. This model inaccuracy is
reflected in the difference between the posterior probabil-
ities and the actual error rates. The most likely amino acids
had an average posterior probability of 96.0%. (Distribution
of posterior probabilities is shown in Figure S1.) The average
expected error for the BI method for this dataset was 94.3%.
Inaccuracy of the evolutionary model would also be expected
for real proteins undergoing biological evolution, perhaps
even more so, since matrices are often optimised on proteins
other than the one under study, and the sizes of the datasets
used to generate the model are usually smaller. As indicated
in Table S1 and Figure S2), use of less accurate substitution
models did not appreciably change the accuracy of the
sequence reconstructions but generally increased the average
posteriors. For instance, the use of a simple WAG substitution
matrix [20] with default equilibrium frequencies and no
gamma distribution resulted in a sequence accuracy of 93.4 6

4.6% (uncertainty in average accuracy approximately 0.5%),
only slightly worse than results obtained with the optimised
model, but with a higher average posterior probability of
97.0%. (Obviously these trends would not continue for
grossly inaccurate substitution models.) This highlights the
fact that the average posterior only reflects the expected
accuracy of the predictions given the accuracy of the model
and that higher posterior probabilities do not indicate a
better substitution model.
Since we recorded the evolutionary process as it occurred,

we were also able to compare thermodynamic properties of
the reconstructed proteins with those of the actual ancestors.
Since the proteins were preequilibrated with respect to
sequence, fitness, and composition before the simulations
began, the central question was whether the variance and bias
in reconstructed sequence properties were different from
equilibrium values. Variances in reconstructed properties of
individual ancestors were often greater than variance among
ancestors, and biases were in some cases quite large and not
in the direction predicted by naı̈ve intuition.
Figure 1 compares the relative stabilities (DGFolding) for the

true ancestral sequences with those of the reconstructions for

Figure 1. Stability (Represented as DGFolding) for the True Ancestor and

Reconstructed Sequences

Stability values shown for three nodes, as labelled in Figure S3: (A)
shallow node, blue, (B) intermediate node, red, and (C) deep node, green.
Each point represents the reconstruction of a single ancestral node in
one of the 84 analysed simulations. Reconstructions were performed
with MP, ML, and BI approaches. DGFolding values represent the average
of 100 reconstructions. Points on the diagonal represent reconstructions
generating accurate ancestral protein stabilities.
DOI: 10.1371/journal.pcbi.0020069.g001
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three different ancestral nodes sampled at different tree
depths. Here, the results from the BI analysis represent an
average over 100 reconstructions for each of the 84
simulations. Given the relative accuracy of the various
methods in reconstructing sequences, it is surprising to see
that for predictions of thermodynamic stability, ML was the
least accurate and BI the most accurate. Notice that the
magnitude of the error can be quite large, and that the
reconstructed stability values for the MP and especially for
the ML reconstructions are generally substantially higher
(DGFolding more negative) than the true value. This indicates a
strong systematic bias in ML and MP toward overestimating the
protein stability. The results are for the most part qualita-
tively similar for each of the three nodes shown correspond-
ing to different depths on the tree.

The random errors for the various reconstruction strat-
egies are rather similar; the standard deviations of the errors
in reconstruction stability are roughly comparable, with BI
having the lowest random error (SD, 1.4 kcal/mol) followed by
ML (SD, 1.6) and MP (SD, 1.8).

The tendency for MP and ML to substantially overestimate
ancestral stability is demonstrated more comprehensively in
Figure 2, which shows the overall distribution of DDG ¼
DGFolding (Reconstruction)�DGFolding (True Ancestor) for the
three different reconstruction methods. On average, MP
reconstructions have DGFolding values 0.4 6 1.8 kcal/mol too
negative and ML reconstructions have DGFolding ¼ 1.5 6 1.6
kcal/mol too negative. The error in thermodynamic stability
for the ML reconstructions was relatively insensitive to the
substitution model used (Table S1). In comparison, DGFolding

for BI reconstructions are on average only 0.05 6 1.4 kcal/mol
too negative. (Again, 6 values represent the range of the
measurements for different ancestral nodes and simulations.
The average errors have an uncertainty of 6 0.1 kcal/mol.
Since ML has the lowest sequence error, BI slightly more, and
MP by far the greatest, it is clear that errors in the ancestral
sequence reconstruction do not translate directly to errors in
the properties of the ancestral reconstructions.

ML shows a statistically significant (correlation coefficient
�0.61, p¼ 0.02) increase in reconstruction bias with the depth
of the node (measured as the shortest distance to an existent

sequence); MP shows a near-significant increase (correlation
coefficient �0.49, p ¼ 0.06), while BI is not significantly
statistically correlated with node depth (p¼ 0.49). Systematic
errors in reconstruction produced by the three different
methods show quite different dependencies on sequence
error rate. ML methods produce a systematic bias that is
roughly linear with sequence error, always overestimating
protein stability. Sequence errors accumulate quickest in MP
reconstructions, but beyond a sequence error rate of about
5%, reconstruction stability overestimates are roughly in-
dependent of sequence error. For sequence error rates below
about 12%, BI slightly overestimates stability, but for higher
sequence error rates, BI tends to substantially underestimate
stability. It is not surprising that the Bayesian method
eventually fails, since as reconstruction sequence error
accumulates, more and more compensatory mutations at
different sites will not be paired in any given reconstruction.
At this level of divergence and reconstruction error, none of
the methods provides a reliable reconstruction of ancestral
stability.
Figure 3 shows the cumulative distribution of absolute

errors in reconstruction stabilities (jDDGj). Once again, there
is clear evidence that BI results in smaller absolute errors
than MP and ML. One disadvantage of BI, however, even for
nodes where it is unbiased, is that it involves the reconstruc-
tion and recreation of a random sampling of sequences
drawn from the a posteriori probability distribution. The
data in Figures 1, 2, and 3 represent the average of 100
sequences drawn from the posterior amino acid distributions.
Expressing, purifying, and characterising that number of
sequences would be a daunting task. The question then arises,
how quickly does BI degrade as the number of averaged
sequences is reduced? How many sequences are required
before the scatter due to sampling error is less than the other
main sources of error? Figure 3 demonstrates that, in this
case, there is only a small reduction in accuracy when only ten
sequences are created and characterised, and that even
creating a single ancestral sequence using BI outperforms

Figure 2. Distribution of Errors in Reconstruction Stabilities (DDG) When

Reconstructions Are Made with MP (Green), ML (Red), and BI (Blue)

DOI: 10.1371/journal.pcbi.0020069.g002

Figure 3. Cumulative Distribution of Absolute Errors in Reconstruction

Stabilities (jDDGj)
Colour code as in Figure 2. Error with BI reconstructions are shown when
averaging is performed over 100 sequence reconstructions (solid line),
ten sequence reconstructions (dashed line), and a single reconstruction
(dotted line).
DOI: 10.1371/journal.pcbi.0020069.g003
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ML and is comparable to MP in overall absolute error while
maintaining a low systematic bias. Creating multiple sequen-
ces will lead to estimates with lower error.

Discussion

The fundamental counterintuitive result of this study is
that although ML ancestral reconstructions are closest to the
true ancestral sequence, they are unreliable guides to
ancestral thermodynamical properties. In contrast, BI recon-
structions sampled from the posterior are on average slightly
less similar to the ancestral sequence, but are a better
reflection of ancestral properties, particularly when multiple
samples are assayed. This result upholds an earlier prediction
[2] that the same biases that lead to false reconstruction of
cumulative sequence properties (i.e., nucleotide or amino
acid frequencies) may also sometimes lead to false recon-
struction of functional properties. In direct contrast to what
has been suggested [8], MP and ML generally overestimate
thermodynamic stability. BI results in the smallest and most
unbiased errors in stability, even when BI is used to produce a
single sequence, with no increase in experimental effort. This
suggests that the results of previous MP and ML reconstruc-
tion studies may be misleading and might profitably be
investigated for possible biases.

To understand why BI reconstructions are preferable,
consider the different sources of error in the estimation of
properties from recreated ancestral proteins. First, there are
random errors in the creation of the ancestral sequences, that
is, the discrepancies between the properties of the recreated
sequence and the true ancestral sequences that average to
zero over a large number of different instances. Second, there
are the systematic errors, the discrepancies that cause a
consistent trend toward underestimation or overestimation
of the protein properties and do not average to zero. Finally,
in the case of BI, there is the additional sampling error caused
by estimating an average property value using only a small
number of reconstructed sequences. The accuracy of this
average will depend upon the number of reconstructions
involved.

For our particular study, we find that the random errors for
the various reconstruction strategies are rather similar;
subtracting the (average) systematic bias, the standard
deviations of the errors in reconstruction stability are
roughly comparable, with BI having the lowest random error
(SD, 1.4 kcal/mol) followed by ML (SD, 1.6) and MP (SD, 1.8).
There is a much more significant difference in the systematic
error, with BI having a much lower systematic error (hDDGi ¼
�0.05 6 0.2 kcal/mol) compared with the ML (hDDGi ¼�1.5 6

0.2) and MP (hDDGi ¼ �0.4 6 0.2) approaches. The BI
reconstruction method has an associated sampling error, but
this error is relatively small when ten reconstructions are
sampled (SD, 0.4 kcal/mol). To make a different comparison,
when ten reconstructions are sampled, the extra sampling
error is roughly equal to the range of stability values observed
at any given ancestral node in different simulations, a rough
estimate of when further accuracy becomes unimportant for
making statements of general trends. Sampling error in-
creases when only a single reconstructed sequence is sampled
(SD, 1.1 kcal/mol). But even so, a single BI reconstruction
results in lower total stability errors than ML and comparable
errors to MP, without appreciable systematic bias.

To convert a bias of DDG ¼�1.5 kcal/mol to a change in
folding temperature is difficult, as it depends on the folding
entropy and on the heat capacity of the folded and unfolded
states. Extensive experiments with point mutations on the
thermal stability of bacteriophage T4 lysozyme indicates a
change of about 4 8C in the folding temperature for every
kcal/mol change in DDG [21]. A bias of �1.5 kcal/mol would
then translate to an increase in the folding temperature of
approximately 6 8C. While this exact value may be dependent
upon the details of the protein and evolutionary models, it is
clear that the magnitude of the effect can be significant.
What is the basis behind the tendency of ML and MP to

overestimate ancestral-state stability? One clue is in the
relatively narrow range of true DGFolding values as shown in
Figure 1. Proteins are generally marginally stable because the
pressure to increase stability (minimise DGFolding and max-
imise PTarget) is counteracted by the smaller number of highly
stable protein sequences versus the large number of less
stable sequences [19, 22]. This means that stabilising residues
tend to dominate a position over long-term evolution, while
the destabilising residues are present but less frequent.
Every location will, given sufficient evolutionary time, be

represented by a distribution of amino acids, with the amino
acids favourable for important protein properties dominat-
ing the distribution. The winner-takes-all nature of the ML
and MP approaches will usually assign to the ancestor the
most favourable amino acids at each location. Less favourable
amino acids that are found in that location with some more
limited frequency will be excluded from the reconstructions.
As a result, the ancestral proteins will be depleted of these
less-favourable residues, with a resulting overestimation of
the ancestral protein’s properties, in much the same way that
majority political parties are overrepresented in democratic
assemblies elected by winner-takes-all balloting. These less-
favourable residues will be present in the appropriate
frequency in BI reconstructions.
Additionally, ML reconstructions will be biased toward the

state (here, amino acid) with the highest frequency in the
model. For extremely deep nodes in a tree with extremely
long branch lengths to the tips, this means that ML would
reconstruct a polyalanine ancestor. While no one would
believe such a reconstruction, smaller branch lengths would
yield more subtle biases. If the most frequent amino acids
have a general tendency toward stabilising interactions, the
bias in the reconstructions toward these amino acids will
provide some bias toward excessive stabilisation. Again, this
bias is not present in BI reconstructions.
Note that the bias in ML reconstructions does not depend

on the inaccuracy of the substitution model. As is observed,
less accurate substitution models do not greatly affect the
bias. In fact, substitution models that better represent the
different propensities of the various amino acids for different
types of locations might have a greater bias toward the most
common, that is, most stabilising amino acids at a location. In
this case, these more accurate models might result in larger,
rather than smaller, biases.
In general, this effect might occur when there are a number

of locations in the protein that contribute to a resulting
property, and where this property is not optimised by the
evolutionary process. In this case, we would expect that some
protein locations would have residues that contribute, and
some locations would have residues that deduct, from this
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particular property. And again, when the reconstruction is
performed, the less favourable amino acids at each location
will be preferentially eliminated, resulting in an overestima-
tion of that property in ancestral sequences. The most
obvious example of that type would be some bulk property
such as protein stability, as investigated here. But many
functional properties might be similarly affected. For
instance, binding of a ligand depends upon a number of
amino acids at the binding site. The stochastic process of
evolution, assuming moderate but not excessive selective
pressure, would result in the distribution of functionally
favourable and -unfavourable amino acids, with the func-
tionally favourable amino acids excessively dominant in the
ancestral reconstructions. As a result, binding affinities (and
the potentially related catalytic rates) might be overestimated
by ML and MP reconstruction methods.

It is interesting to note that MP seems to have less
systematic error in the estimation of ancestral protein
stability compared with ML, even though the reconstructions
have lower sequence accuracy. Part of the reason might be the
tendency of ML to overestimate the number of common
amino acids in ancestral proteins. MP might also produce
reduced systematic biases as it has a tendency to choose a
certain number of less-likely possibilities in different loca-
tions. In this way, the increased errors in the MP reconstruc-
tions might, to a limited extent, counter the biases produced
by its winner-takes-all approach.

We have tried to mimic protein evolution by using
evolutionary simulations that contain many of the salient
features of real molecular evolution (e.g., population dynam-
ics, interacting locations, nonadditive fitness functions).
Nevertheless, they clearly cannot replicate protein thermody-
namics or evolutionary dynamics precisely. Although pair-
potentials have achieved widespread use and success in the
demanding area of protein structure prediction, the stabil-
ities of real biological proteins are only approximated by the
pair-potentials used in this study. There may be specific
stabilising interactions that are interrupted by reconstruction
errors. Changes in the protein backbone are not included in
this analysis. Furthermore, we have simulated only one
protein structure. A legitimate question is therefore how
general the results are expected to be. We expect that the
precise details of how functional bias and random error
accumulate will depend on the true details of protein energy
functions. The proportion of sites that contribute mean-
ingfully to function will vary depending on the details of
protein structure and how the protein carries out its
functional requirements. Furthermore, epistatic interactions
are likely to accumulate differently in different real proteins,
and so the time period during which the BI reconstructions
are unbiased is also likely to vary.

While the bias present in any specific experimental
reconstruction cannot be determined from this simplified
analysis, it is clear that there is a strong risk that bias will
accumulate for deeper nodes as the uncertainty of recon-
struction at each position becomes higher. In many cases, it
accumulates quite rapidly for the ML and MP methods, and
much more slowly for the BI approach. Although at some
divergence levels, the statistical bias toward thermostability in
the ML and MP approaches may be overcome by the
accumulation of inaccurately reconstructed compensatory
pairs, this does not provide a convincing rationale for using

these approaches; a stopped clock will be correct twice a day,
but is still useless for keeping time.
The fundamental question that needs to be asked in

reconstruction experiments is whether the property in
question has a tendency to associate with low or high
frequency variants at any positions in the protein. It appears
to us that this is likely to be the case often enough that BI
should always be used rather than ML or MP. For example,
ligand binding and catalysis may often depend on key highly
stable amino acid interactions and would therefore be better
predicted by Bayesian sampling from the posterior. Despite
the intuitive appeal of getting a ‘‘more correct’’ sequence
with ML, we do not have any clear examples where it is
preferable to use ML to reconstruct properties. Concerns
over increased variability with BI can be addressed by
sequencing three to ten variants, depending on resources.
Even using BI, there may still be sensitivity to the use of

incorrect models. The discrepancies between the number of
expected and the number of observed errors in the ML and
BI approaches indicate that the simple models are doing an
imperfect job at representing the complicated reality of our
population simulations. We expect that similar discrepancies
occur when modelling real protein evolution, and so the
accumulation of bias should always be considered as a
possible explanation for a given set of results. Since biases
affect the ancestral states relative to the extant proteins, they
will tend to result in similar parallel trends along different
branches of the tree. As a result, signatures of this type of bias
include cases where the reconstructed ancestor differs from
all or most of its descendants or where parallel trends are
observed from ancestors to descendants in many independ-
ent branches or taxon groups. While we have not demon-
strated that any particular study is incorrect, it is these types
of observations that should be carefully confirmed, since they
are both extraordinary and mimic reconstruction bias; the
simplest (null) explanation is that such cases represent
incorrect inference, not true ancestral shifts in function.
We expect that the majority of ancestral shifts in function will
have occurred once on a single evolutionary lineage, and
would therefore be less suspect.

Materials and Methods

Protein model. The goals of these evolutionary simulations require
a protein model that is sufficiently accurate to provide interpretable
results but sufficiently simple to allow calculations for modestly large
population sizes over many generations and many replicates. In
previous work, we have performed evolutionary simulations of
simplified lattice proteins [23–25]. Here, in order to have a
biologically reasonable protein, we chose the native state of a real
existent protein, that of the purple acid phosphatase (PDB
designation 1QHW [26]), an ab four-layer sandwich, as it was of
reasonable size (300 residues) and compact and contained a variety of
secondary structures. The stability of a sequence was measured as the
energetic preference for this predesignated native state in thermo-
dynamic competition with an ensemble of misfolded states, while the
fitness measured the fraction of time that the protein would be
correctly folded.

It is, of course, impossible to completely characterise the entire set
of possible unfolded or misfolded structures, so we selected 46
random structures to characterise the distribution of thermodynamic
properties of the ensemble of unfolded states. These random
structures were chosen from the set of single-strand protein domains
of unique topology, between 300 and 399 amino acids in length, based
on the CATH database [27]. (The PDB accession codes of the selected
structures are listed in Table S2 [28].) For proteins longer than 300
residues, only the first 300 residues were considered. The use of
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relatively compact decoys to represent alternative conformations of
the protein is based on the assumption that, while compact states are
not the most numerous alternative states, they are the most likely to
be thermodynamically accessible under native-like solvent condi-
tions. Thus, we assumed that it is the competition between folding
and misfolding (rather than between folding and unfolding) that is
the major selective pressure acting on protein evolution.

A simple contact potential was used to calculate the free energy of
the target and 46 random structures [23–25]. The free energy G(k) of a
sequence fA1,A2,. . .A300g in structure k is given by:

GðkÞ ¼
X

i, j

cðAi;AjÞQk
i;j ð1Þ

where c(Ai, Aj) is the contact potential between amino acids Ai and Aj
in positions i and j, and Qk

i;j is one if i and j are in contact in structure
k, and zero otherwise. Residues were considered to be in contact if
their Cb atoms (Ca in the case of gly) were within 6 Å of each other.
The contact potentials were obtained by Miyazawa and Jernigan,
based on a statistical analysis of known protein structures [29]. Due to
the nature of their statistical analysis, these potentials represent
‘‘potentials of mean force’’ and implicitly include hydrophobic
interactions and other effects of the solvent.

As described above, the energies of the 46 random structures are
used to estimate the distribution of energies of a much larger
ensemble. The energies of the random structures roughly followed a
Gaussian distribution. We modelled the entire set of nonnative
structures with a continuous Gaussian energy distribution with mean
�G and variance r2, both calculated from the energies of the set of 46
random structures. For protein stability, the quantity that matters is
the free energy difference (DGFolding) between the native state and an
ensemble of N alternative states (modelled with mean �G and variance
r2), given by

DGFolding ¼ GNS þ
r2 � 2kT �G

2kT
þ kTlnN ð2Þ

where kT is equal to 0.6 kcal/mol. We used a value of 10160 for N,
representing approximately 3.4 conformations available to each
amino acid. This value, reasonable in magnitude, was chosen so that
an extremely small fraction of random sequences would be stable, yet
mutations would be accepted at a reasonable rate during the
simulation. PNS, the probability that the protein is in its native
conformation is given by

PNS ¼
expð�DGFolding=kTÞ

1þ expð�DGFolding=kTÞ
: ð3Þ

Since protein stability represents differences in free energy, it is
relatively insensitive to changes in the overall composition of the
protein (such as inclusion of more charged groups or hydrophobic
residues), which would have a similar impact on all compact
conformations.

Evolution model. We modelled populations of protein sequences
evolving through mutation, selection, replication, and speciation.
Mutations occurred at a rate of 0.1 amino acid substitution per
sequence per generation, and the relative fitness of each new
sequence was computed as the probability of folding into the target
state (PNS, Equation 3). To form the next generation, the frequency of
each variant was multiplied by its relative fitness and sampled with
replacement. The population size was maintained at 1,000 proteins
throughout the simulation.

Prior to beginning each simulation, the population was initiated as
1,000 copies of a single random protein sequence and allowed to
reach mutation/selection equilibrium by evolving for 10,000 gener-
ations. This allowed the remainder of the simulation to proceed in a
nearly neutral manner, with no overall increase in protein stability or
overall change in amino acid composition. Speciation events
consisted of duplicating the entire population, after which the two
population copies mutated and evolved independently from one
another. In order to use a biologically reasonable phylogenetic tree,
the pattern and timing of speciation events were based on a
phylogeny generated from a set of 20 ribonuclease A mammalian
gene sequences (listed in Table S3). The tree (shown in Figure S3) was
generated using MrBayes [13] and rooted with sequences from
chicken, frog, and iguana. Although this tree almost certainly has
errors with respect to the true phylogeny and rooting of these species,
this is irrelevant to our study since it represents a biologically
plausible tree and the true tree for our simulations.

The total length of the tree was 302,864 generations, and 100
replicate evolutionary simulations were performed. After preequili-

bration, 16 of these simulations were obviously trapped in local
maxima with low fitness (PNS , 0.9) and were excluded from further
simulation and analysis. There were 15 ancestral nodes for each of the
84 remaining simulations, and therefore 1,260 ancestral proteins
were simulated and reconstructed. There is some question about
what the appropriate ‘‘ancestral’’ sequence actually is. Any of the
variants that exist at the moment of speciation might become the
apparent ancestor, depending on the stochastic interaction of
selection and drift in both populations, although the most frequent
variant at that time is most likely to succeed. Since the most frequent
variant is also most likely to reflect the properties of future successful
substitutions, we chose the most common sequence in the population
as the ‘‘wild-type.’’ Subsequent observations of variation in recon-
structions indicated that this choice did not have a noticeable impact
on the results.

Phylogenetic analysis. ML and BI methods of ancestral recon-
struction require a model of the substitution process. Standard
substitution matrices are based on average processes in biological
datasets, and although they are almost certainly suboptimal even for
those datasets, we considered it more conservative to use a
substitution matrix that is optimised for our sequences to give the
ML and BI methods the best chance to work successfully. Using the
complete set of sequences obtained in our 84 simulations (represent-
ing 84 3 300¼ 25,200 sites) and the phylogenetic tree that described
their relationship to one another, the optimal (highest log likelihood)
reversible substitution matrix with a C distribution of rate classes was
found. (The software was written taking advantage of the PAL Java
library [30].) We thus mimic the situation in real life where the true
substitution process is unknown and is instead represented by a
computationally convenient Markov chain model that best describes
the observed data.

Mesquite [31] and PAML [32] were used to generate reconstruc-
tions of all internal nodes for the MP and ML methods, respectively.
Locations that were ambiguous in the MP reconstruction were
selected at random from the possible options. PAML provides the
marginal posterior probability of every amino acid at each location in
the ancestral reconstructions, and for the BI ‘‘reconstructions’’ amino
acids were selected at random based on these probabilities. For BI,
the expected error was estimated using the fact that the probability of
correct re-creation of a single location is equal to the sum of the
squares of the posterior probabilities.

Supporting Information

Figure S1. Distribution of Maximum Posterior Probabilities for
Reconstructions of the Three Nodes Indicated in Figure S3

For each node, the fraction of all sites that are either reconstructed
correctly (solid) or incorrectly (cross-hatched) for a given value of the
maximum ML posterior probability for the three different recon-
struction methods: ML (red), MP (green), and BI (blue). Note the
change in scale in the y axis.
Found at DOI: 10.1371/journal.pcbi.0020069.sg001 (105 KB PDF).

Figure S2. Distribution of Posterior Probabilities for ML Recon-
structions of the Three Nodes Indicated in Figure S3

For each node, the fraction of all sites that are either reconstructed
correctly (solid) or incorrectly (cross-hatched) for a given value of the
posterior probability for four different substitution models as listed
in Table S1: optimised (with C) (red), WAGþFþC [20] (cyan), WAGþ
C (magenta), and WAG (orange). Note the change in scale in the y axis.
Found at DOI: 10.1371/journal.pcbi.0020069.sg002 (117 KB PDF).

Figure S3. The Phylogenetic Tree Used in the Evolution Simulations,
Based on a Phylogenetic Reconstruction of 20-y RNase A Gene
Sequences

The three internal nodes used in Figure 1 are marked.

Found at DOI: 10.1371/journal.pcbi.0020069.sg003 (88 KB PDF).

Table S1. Average Reconstruction Sequence Accuracy, Average
Posterior Probabilities, and Average Thermodynamic Stability
Accuracy for ML Reconstructions Produced Using Different Sub-
stitution Models

‘‘Optimised (with C)’’ refers to the substitution model optimised for
the generated sequence data as described in the text. We also used the
WAG substitution matrix [20], with default equilibrium frequencies
or with equilibrium frequencies estimated based on the simulated
data (þF), and without or with gamma-distributed rate variation (þC).
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Found at DOI: 10.1371/journal.pcbi.0020069.st001 (30 KB DOC).

Table S2. PDB Designation of Structures Used to Form the Random
Ensemble of States

Found at DOI: 10.1371/journal.pcbi.0020069.st002 (84 KB PDF).

Table S3. Ribonuclease Sequences Used to Construct Model
Phylogenetic Tree

Found at DOI: 10.1371/journal.pcbi.0020069.st003 (114 KB PDF).
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