Informatics Challenges

- Data storage 6+ TB for microread raw image files
Toss them out: calculate on the fly
Computation Speed
Faster to align long reads
Exponential with number of reads if comparing to each other
Software
Getting better
Assembly, mapping
counting, variation

$4^{\text {th }}$ Gen PR Space The $2^{\text {nd }}$ Coming

1 Kb sequences, highly accurate Fast, cheap
$\$ 300$ genome (10x) in 30 minutes (??)
Less front-end preparation and labor
What is required for personal genomics?
10,000 vertebrate genomes project

Read Length \& Resequencing

Mapping Unique Reads

Single reads map to multiple positions if they hit repetitive DNA

Paired End Reads

Read 1
Read 2

Solexa: paired end is both ends of ~ 300 bp fragment (shorter than a 454 read, shorter than most TEs)

454 paired ends are:
$\sim 3 \mathrm{~Kb}$
$\sim 8 \mathrm{~Kb}$
~20Kb

Paired End Reads

Read 1 Read 2

Paired read often map uniquely

Single reads can map to multiple positions

454 Paired-End Library Construction

Other Order Information

FISH mapping
Recombination map
BAC paired ends
Verification by PCR
Quite expensive; usually long-term follow-up, only samples

Contig Assembly

Significant overlap at ends of fragments
IF overlap fragment is unique in genome, then perfect assembly of contigs (with gaps in between)
So, want long enough to be likely unique
Want to identify repeat sequences
"Shortest Common Superstring" Problem
But, tend to delete duplicate regions

Oligo Frequency Model

$$
P(\text { oligo })=\left(\prod_{n u c} \text { freq }_{n u c}\right)^{L}
$$

Expected occurrences in genome?
Genome length $N=3 \times 10^{9}$
Nucleotide frequencies equal
What length expected to occur <1 time?
For that length, what is probability of 2,3 ,
5,10 ?
Use Poisson

Shotgun Sequencing

Random fragments
Coverage (C), or redundancy, is average number of times a nucleotide should be sequenced
C=NL/G
Number reads sequenced
Length of read (average)
Genome size
How many nucleotides covered at least once?
Poisson approximation:

$$
1-e^{-c}
$$

More Shotgun Rough Expectations

Average contig length:

$(L / c) e^{c}$

Number of gaps:
$N e^{-c}$

Average gap length:
L / c

A Quick Visual

But It's Not That Simple

Calculations assume you know where the reads go Sequencing errors
Quality scores, low error in the first place
Sampling bias
Cloning bias is particularly bad
Some sequences are poison
Repetitive sequence
TEs, mini-satellites, microsatellites, low complexity, tandem repeats
Gene paralogs (really want to get these right!)
The more free unplaced ends, the more likely to have spurious overlap (orientation, revcomp)

More Concerns

Over-collapsing
Leaves extra unplaceable fragments
More reads with no place to go
Shortest common superstring => biased
BAC ends, paired end info
Drastically reduce the possibilities of where a contig can go
Supercontigs
Polymorphisms

