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Why a Hidden Markov Model?

Data elements are often linked by a string
of connectivity, a linear sequence

Secondary structure prediction (Goldman, Thorne, Jones)
@ CpG islands

>

Models of exons, introns, regulatory regions, genes
& Mutation rates along genome
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Sequence Alignment Profiles
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Hidden Markov Models:

Bugs and Features

Memoryless
Sum of states is conserved (rowsums =1)
omplications?

enefits

> Flexible probabilistic framework
" E.g., compared to regular expressions




Profiles: an Example

mcontinue mcontinue

Mmoo >

@ A .04 .@ A 2
@.\0.1%’ \C 01 ]%
% D 0142 SD 055>
E . E .1
F F .06

delete



Profiles, an Example: States

mcontinue

mcontinue

State #3

delete



Profiles, an Example: Emission

Sequence Elements
(possibly emitted by

a state)
mcontinue mcontinue

g A 04 A 2

05 | C 1 |5 \C 01 ]%

2 L SD .01~ ND 054>
08 E . E .1

01 F F .06

State #1 State #2 State #3

delete



Profiles, an Example: Emission

Sequence Elements Emission
(possibly emitted by  probabilities
a state)

continue

mcontinue

Al A 2

c 4 \c 01%
Dl N ID 052>
E E .1

F F .06
State #1 State #2 State #3

delete



Profiles, an Example: Arcs

mcontinue mcontinue

A A A .04 A 2

C .05 C 1 |5 \C 01 ]%

D 2 | D .01/£*2 D 055>
E .08 \transition| E 2 N E .1

F .01 F . F .06
State #1 State #2 State #3

delete



Profiles, an Example:

Special States

Self => Self
Loop

ontlnue mcontinue

A A A .04 A 2

C .05 \c 1|5 \C 01 ]%

D .2 D .01/£*2 D 05K %>
E 08 transition E E 1

F .01 F . F .06
State #1 State #2 State #3

delete

No Delete
“State”



Snakes




A Simpler not very Hidden MM

Nucleotides, no Indels, Unambiguous Path
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A Simpler not very Hidden MM

Nucleotides, no Indels, Unambiguous Path

8 :1 1.0
A7 —P»
T 1

A

0.7

—4>00
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0.4

1.0 S;Zj 1.0
PP

T .3

T

0.3

InP(DIM)= Y InP(E, |state) + » InP(x-> y)

states

arcs



A Toy not-Hidden MM

Nucleotides, no Indels, Unambiguous but
Variable Path
All arcs out are equal

e C
WY AGD
EmitA [ EmitT |Q

Example sequences: GATC ATC GC GAGAGC AGATTTC

P(AGATTTC | M) = (0.5%1.0)"’

Arc Emission



A Simple HMM

CpG Islands; Methylation Suppressed in
Promoter Regions; States are Really Hidden Now

0.8 0.9

CpG Non-CpG

P(State; |D<=1i)= EP(Statefc'l) * P(x—>y)*P(E, | Sfdte;)

Fractional likelihood



The Forward Algorithm

CpG Probability of a Sequence is the Sum of
All Paths that Can Produce It




The Forward Algorithm

CpG Probability of a Sequence is the Sum of
All Paths that Can Produce It




The Forward Algorithm

CpG Probability of a Sequence is the Sum of
All Paths that Can Produce It




The Forward Algorithm

CpG Probability of a Sequence is the Sum of
All Paths that Can Produce It




The Viterbi Algorithm
Most Likely Path

2 m(
.003*.8,
0025*.1)

4*m(
.0185*.2, .003*.2,
.0029*.9) .0025*.9)
=.00050

G C G A A




Forwards and Backwards
Probability of a State at a Position




Forwards and Backwards
Probability of a State at a Position

P(CpG li=4,D)
_ P(CpG)
| P(CpG) + P(non - CpG)]
__ 00007 43
0.0007 + 0.0009
G C G A



Homology HMM

' Gene recognition, identify distant
homologs

'Common Ancestral Sequence

| atch, site-specific emission probabilities

nsertion (relative to ancestor), global emission probs
elete, emit nothing

lobal transition probabilities




Homology HMM
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Multiple Sequence Alignment HMM

> Defines predicted homology of positions
(sites)

Recognize region within longer sequence
Model domains or whole proteins

Structural alignment

> Compare alternative models

Can modify model for sub-families

deally, use phylogenetic tree
Often not much back and forth



Model Comparison

For ML, take P__(D16,M)

@ Usually _n Pmax (D 1 6, M) to avoid numeric
error

® For heuristics, “score” is —log, P(D | 0 iveas M)
For Bayesian, calculate

P(D16,M)* P(0)* P(M)

P.. (6,M1D)=
( ) Y P(D16,M)* P(6)* P(M)

max




Parameters, 6

Types of parameters

Amino acid distributions for positions
Global AA distributions for insert states
Order of match states

Transition probabilities

Tree topology and branch lengths
Hidden states (integrate or augment)

> Wander parameter space (search)

> Maximize, or move according to posterior
probability (Bayes)




Expectation Maximization (EM)

& Classic algorithm to fit probabilistic model
parameters with unobservable states
) Or missing data

2 Two Stages, iterate

- Maximize

o If know hidden variables (states), maximize model
parameters with respect to that knowledge

Expectation

W If know model parameters, find expected values
of the hidden variables (states)

'Works well even with e.g., Bayesian to
find near-equilibrium space




Homology HMM EM

Start with heuristic (e.g., ClustalW)

- Maximize

Match states are residues aligned in most
sequences

Amino acid frequencies observed in columns

Realign all the sequences given model
- Repeat until convergence

~ Problems: Local, not global optimization
© Use procedures to check how it worked




Model Comparison

> Determining significance depends on
comparing two models

Usually null model, H,, and test model, H,
Models are nested if H, is a subset of H,

If not nested

" Akaike linformation Criterion (AIC) [similar to
empirical Bayes] or
& Bayes Factor (BF) [but be careful]

Generating a null distribution of statistic

> Z-factor, bootstrapping, Xi parametric
bootstrapping, posterior predictive




/Z Test Method

* Database of known negative controls
E.g., non-homologous (NH) sequences

Assume NH scores ~ N(u,0)

Ji.e., you are modeling known NH sequence scores as
a normal distribution

> Set appropriate significance level for multiple
comparisons (more below)

" Problems

Is homology certain?

Is it the appropriate null model?
) Normal distribution often not a good approximation

Parameter control hard: e.g., length distribution




Bootstrapping and
Parametric Models

Random sequence sampled from the same set
of emission probability distributions

Same length is easy

Bootstrapping is re-sampling columns

& Parametric models use estimated frequencies, may
Include variance, tree, etc.
) More flexible, can have more complex null

7 Allows you to consider carefully what the null means, and
what null is appropriate to use!

) Pseudocounts of global frequencies if data limit

Insertions relatively hard to model
What frequencies for insert states? Global?




Homology HMM Resources

UCSC (Haussler)

SAM: align, secondary structure predictions,
HMM parameters, etc.

USTL/JaneIia (Eddy)

Pfam: database of pre-computed HMM
‘alignments for various proteins



Relative Substitution Rate

Time Spent Single-Stranded



Increasing Asymmetry with
Increasing Single Strandedness

eg, P(A=>G) =c¢c +

T = (Dyy * Slope ) + Intercept
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Relative substitution rate (A-->G)

)

4x Redundant Sites

IN
|

W

high
- - = .low
complete

-

[ | [

0.2 04 0.6 0.8
Time spent single-stranded

1.2



Beyond HMMs

'Neural nets

'Dynamic Bayesian nets
'Factorial HMMs

'Boltzmann Trees

'Kalman filters

'Hidden Markov random fields




COIl Functional Regions

O, + protons+ electrons = H,O + secondary proton pumping (=ATP)




