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Why a Hidden Markov Model?
Data elements are often linked by a string

of connectivity, a linear sequence
Secondary structure prediction (Goldman, Thorne, Jones)
CpG islands

Models of exons, introns, regulatory regions, genes
Mutation rates along genome



Occasionally Dishonest Casino

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

e
Fair

e
Loaded

a
Fair=>Loaded

a
Loaded=>Fair



Posterior Probability of Dice



Sequence Alignment Profiles
Mouse TCR Vα



Hidden Markov Models:
Bugs and Features

Memoryless
Sum of states is conserved (rowsums =1)
Complications?

Insertion and deletion of states (indels)
Long-distance interactions

Benefits
Flexible probabilistic framework

E.g., compared to regular expressions



Profiles: an Example

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

insert

delete

continue continue

insert
insert



Profiles, an Example: States

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

insert

delete

continue continue

insert
insert

State #1 State #2 State #3



Profiles, an Example: Emission

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

insert

delete

continue continue

insert
insert

State #1 State #2 State #3

Sequence Elements
(possibly emitted by

a state)



Profiles, an Example: Emission

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

insert

delete

continue continue

insert
insert

State #1 State #2 State #3

Sequence Elements
(possibly emitted by

a state)

Emission
Probabilities



Profiles, an Example: Arcs

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

delete

continue continue

insert
insert

State #1 State #2 State #3

transition

insert



Profiles, an Example:
Special States

A .1
C .05
D .2
E .08
F .01

Gap A .04
C .1
D .01
E .2
F .02

Gap A .2
C .01
D .05
E .1
F .06

delete

continue continue

insert
insert

State #1 State #2 State #3

transition

insert

Self => Self
Loop

No Delete
“State”





A Simpler not very Hidden MM
Nucleotides, no Indels, Unambiguous Path

G .1
C .3
A .2
T .4

G .1
C .1
A .7
T .1

G .3
C .3
A .1
T .3

A
0.7

T
0.4

T
0.3

1.0 1.0 1.0

! 

P(D |M) = 0.7"1.0"0.4 "1.0"0.3"1.0



A Simpler not very Hidden MM
Nucleotides, no Indels, Unambiguous Path

G .1
C .3
A .2
T .4

G .1
C .1
A .7
T .1

G .3
C .3
A .1
T .3

A
0.7

T
0.4

T
0.3

1.0 1.0 1.0

! 

lnP(D |M) = lnP(ED | state)
states

" + lnP(x# > y)
arcs

"



A Toy not-Hidden MM
Nucleotides, no Indels, Unambiguous but

Variable Path
All arcs out are equal

Example sequences:   GATC   ATC   GC   GAGAGC   AGATTTC

Begin
Emit G

Emit A

Emit C

Emit T

End

! 

P(AGATTTC |M) = (0.5"1.0)
l= 7

Arc Emission



A Simple HMM
CpG Islands; Methylation Suppressed in

Promoter Regions; States are Really Hidden Now

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2 0.1

0.2

CpG Non-CpG

0.8 0.9

! 

P(statey
i
|D <= i) = P(statex

i"1
)#P(x" > y)

x

$ *P(ED | statey
i
)

Fractional likelihood



The Forward Algorithm
Probability of a Sequence is the Sum of

All Paths that Can Produce It

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

G .3

G .1

.3*(

.3*.8+

.1*.1)
=.075

.1*(

.3*.2+

.1*.9)
=.015

C



The Forward Algorithm
Probability of a Sequence is the Sum of

All Paths that Can Produce It

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

G .3

G .1

.3*(

.3*.8+

.1*.1)
=.075

.1*(

.3*.2+

.1*.9)
=.015

C

.3*(

.075*.8+

.015*.1)
=.0185

.1*(

.075*.2+

.015*.9)
=.0029

G



The Forward Algorithm
Probability of a Sequence is the Sum of

All Paths that Can Produce It

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

G .3

G .1

.3*(

.3*.8+

.1*.1)
=.075

.1*(

.3*.2+

.1*.9)
=.015

C

.3*(

.075*.8+

.015*.1)
=.0185

.1*(

.075*.2+

.015*.9)
=.0029

G

.2*(

.0185*.8+

.0029*.1)
=.003

.4*(

.0185*.2+

.0029*.9)
=.0025

A

.2*(

.003*.8+

.0025*.1)
=.0005

.4*(

.003*.2+

.0025*.9)
=.0011

A



The Forward Algorithm
Probability of a Sequence is the Sum of

All Paths that Can Produce It

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

G .3

G .1

.3*(

.3*.8+

.1*.1)
=.075

.1*(

.3*.2+

.1*.9)
=.015

C

.3*(

.075*.8+

.015*.1)
=.0185

.1*(

.075*.2+

.015*.9)
=.0029

G

.2*(

.0185*.8+

.0029*.1)
=.003

.4*(

.0185*.2+

.0029*.9)
=.0025

A

.2*(

.003*.8+

.0025*.1)
=.0005

.4*(

.003*.2+

.0025*.9)
=.0011

A



The Viterbi Algorithm
Most Likely Path

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

G .3

G .1

.3*m(

.3*.8,

.1*.1)
=.072

.1*m(

.3*.2,

.1*.9)
=.009

C

.3*m(

.075*.8,

.015*.1)
=.0173

.1*m(

.075*.2,

.015*.9)
=.0014

G

.2*m(

.0185*.8,

.0029*.1)
=.0028

.4*m(

.0185*.2,

.0029*.9)
=.0014

A

.2*m(

.003*.8,

.0025*.1)
=.00044

.4*m(

.003*.2,

.0025*.9)
=.00050

A



Forwards and Backwards
Probability of a State at a Position

G .1
C .1
A .4
T .4

G .3
C .3
A .2
T .2

0.10.2

Non-CpG

0.8

0.9 G

CpG

C G

.2*(

.0185*.8+

.0029*.1)
=.003

.4*(

.0185*.2+

.0029*.9)
=.0025

A

.2*(

.003*.8+

.0025*.1)
=.0005

.4*(

.003*.2+

.0025*.9)
=.0011

A

.003*(

.2*.8+

.4*.2)
=.0007

.0025*(

.2*.1+

.4*.9)
=.0009

! 

Lk
i

= fk (i)bk (i)



Forwards and Backwards
Probability of a State at a Position

G C G A A

.003*(

.2*.8+

.4*.2)
=.0007

.0025*(

.2*.1+

.4*.9)
=.0009

! 

P(CpG | i = 4,D)

=
P(CpG)

P(CpG) + P(non "CpG)[ ]

=
0.0007

0.0007 + 0.0009
= 0.432



Homology HMM
Gene recognition, identify distant

homologs

Common Ancestral Sequence
Match, site-specific emission probabilities
Insertion (relative to ancestor), global emission probs
Delete, emit nothing
Global transition probabilities



Homology HMM

start

insert insert

match

delete delete

match end

insert





Multiple Sequence Alignment HMM
Defines predicted homology of positions

(sites)
Recognize region within longer sequence
Model domains or whole proteins
Structural alignment
Compare alternative models

Can modify model for sub-families
Ideally, use phylogenetic tree

Often not much back and forth
Indels a problem



Model Comparison

Based on
For ML, take

Usually                                         to avoid numeric
error

For heuristics, “score” is
For Bayesian, calculate

! 

P(D |",M)

! 

Pmax (D |",M)

! 

"lnPmax (D |#,M)

! 

"log2 P(D |# fixed ,M)

! 

Pmax (",M |D) =
P(D |",M) *P "( )*P M( )
P(D |",M) *P "( )*P M( )#



Parameters,
Types of parameters

Amino acid distributions for positions
Global AA distributions for insert states
Order of match states
Transition probabilities
Tree topology and branch lengths
Hidden states (integrate or augment)

Wander parameter space (search)
Maximize, or move according to posterior

probability (Bayes)

! 

"



Expectation Maximization (EM)
Classic algorithm to fit probabilistic model

parameters with unobservable states
Or missing data

Two Stages, iterate
Maximize

If know hidden variables (states), maximize model
parameters with respect to that knowledge

Expectation
If know model parameters, find expected values

of the hidden variables (states)

Works well even with e.g., Bayesian to
find near-equilibrium space



Homology HMM EM
Start with heuristic (e.g., ClustalW)
Maximize

Match states are residues aligned in most
sequences
Amino acid frequencies observed in columns

Expectation
Realign all the sequences given model

Repeat until convergence
Problems: Local, not global optimization

Use procedures to check how it worked



Model Comparison
Determining significance depends on

comparing two models
Usually null model, H0, and test model, H1

Models are nested if H0 is a subset of H1

If not nested
Akaike Iinformation Criterion (AIC) [similar to

empirical Bayes] or
Bayes Factor (BF) [but be careful]

Generating a null distribution of statistic
Z-factor, bootstrapping,      , parametric

bootstrapping, posterior predictive

! 

"#
2



Z Test Method
Database of known negative controls

E.g., non-homologous (NH) sequences
Assume NH scores

i.e., you are modeling known NH sequence scores as
a normal distribution

Set appropriate significance level for multiple
comparisons (more below)

Problems
Is homology certain?
Is it the appropriate null model?

Normal distribution often not a good approximation
Parameter control hard: e.g., length distribution

! 

~ N(µ," )



Bootstrapping and
Parametric Models

Random sequence sampled from the same set
of emission probability distributions

Same length is easy
Bootstrapping is re-sampling columns
Parametric models use estimated frequencies, may

include variance, tree, etc.
More flexible, can have more complex null
Allows you to consider carefully what the null means, and

what null is appropriate to use!
Pseudocounts of global frequencies if data limit

Insertions relatively hard to model
What frequencies for insert states? Global?



Homology HMM Resources

UCSC (Haussler)
SAM: align, secondary structure predictions,

HMM parameters, etc.
WUSTL/Janelia (Eddy)

Pfam: database of pre-computed HMM
alignments for various proteins
HMMer: program for building HMMs





Increasing Asymmetry with
Increasing Single Strandedness

e.g.,   P ( A=> G)  =  c  +  τ

τ  =  ( DssH * Slope )  +  Intercept
! 
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2x Redundant Sites



4x Redundant Sites



Beyond HMMs

Neural nets
Dynamic Bayesian nets
Factorial HMMs
Boltzmann Trees
Kalman filters
Hidden Markov random fields



COI Functional Regions

 

 

D

Water

K
K

HD

H

Water

Oxygen

Electron

H (alt)

O2 + protons+ electrons = H2O + secondary proton pumping (=ATP)


