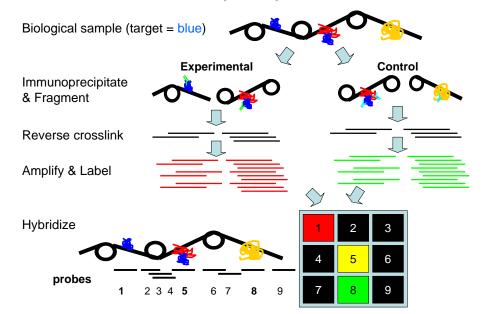

	My Definition of BioInformatics		
Bioinformatics Case Study: Genome-wide Analysis of the Distances between Human Transcription Factor Binding Sites BIO17712 Feb. 1, 2007 Hyunmin Kim	 Data symbols Information: useful data what, where, when Knowledge Application of Information and Data How Understanding Why Bio Data A,C,G,T, A.Aetc Bio Information Entities of DNA, RNA, Protein Bio Knowledge Associations between information entities Understanding of Biology Mechanism of life, Death, Disease 		
<section-header> Association of Bio Entities Flow DNA->DNA: Replication DNA->mRNA: transcription mRNA->Protein: translation Interplay Protein<->Protein: rotein-protein interaction DNA<->Protein: trans- Regulation DNA<->DNA: cis- Regulation </section-header>	STEP1: Understanding Biology and Experiments		

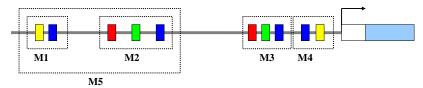
Promoter Structure



- Form composite element or *cis*-regulatory module
- Protein-protein interaction
- Chromatin remodeling
- long-distance control

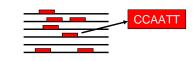
Experimental TFBS assay

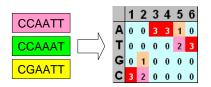
- In vitro
 - e.g., EMSA, DNasel foot printing
 - Do not reflect complexity of the promoter structure
 - Collected in JASPAR and TRANSFAC database
- In vivo
 - e.g., Ligation-mediated PCR, Chromatin immunoprecipitation (ChIP)
 - Tissue-specific information
 - Inability to detect precise contacts and indirect interaction
- High-Throughput
 - e.g., ChIP-chip, DamID, PBM
 - Indirect interactions
 - Low resolution


ChIP-chip Experiment

STEP2: Problems of Computational Approaches

cis-Regulatory Module (CRM)


• Find re-occurring groups of motifs and PWM hits



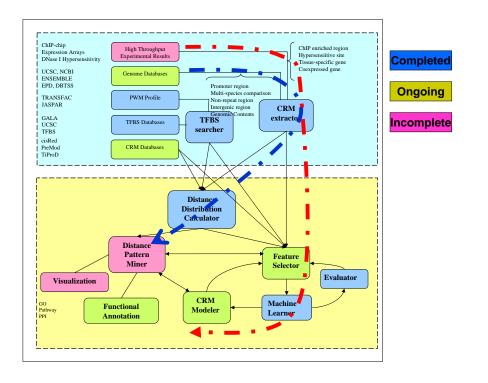
- Features:
 - Combination of TFBS elements $_{(Segal and Sharan 2005; Zhou and Wong 2004)}$
 - Ordering (Li, Cheng et al. 2006)
 - Compactness (Hannenhalli and Levy 2002; Long, Liu et al. 2004; Rateitschak, Muller et al. 2004)
 - Spacing between Composite Elements (CEs) (Diamond, Miner et al. 1990; Kel-Margoulis, Romashchenko et al. 2000)
 - Distance preference (Yu, Lin et al. 2006a; Yu, Lin et al. 2006b) between TFBS elements

Computational TFBS Estimation

- Motif discovery
 - Search for frequently occurring 10-20bp segment from collection of DNA sequences
 - Coexpressed genes, orthologous genes, ChiPchip data
- Search for the known motifs using Position Weighted Matrices (PWMs)
 - Gather statistics of bp occurrences from collection of motifs
 - High false positive rate
- Modeling cis-regulatory dodule (CRM)

- Emerging Issues in Characterizing Distance Features between TFBSs
- Distance distribution between TFBS groups
 - PWM similarity (e.g., homotypic, heterotypic)
 - Class type of corresponding TF (e.g., bZip, Homeodomain)
- Incorporation of distance distributions into a CRM model
 - Characteristics of promoters (tissue-type, function, etc.)
 - ChIP-chip experimental results
 - Correlation of TFBSs with complementary genomic contents

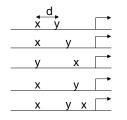
- STEP 3: Generate Testable Hypotheses and Corresponding Aims
 - Significance
 - Novelty
 - Feasibility


Hypotheses

- There are specific <u>distance distributions</u> (between TFBS) that are functionally important in transcriptional control.
- These distributions can be characterized from the experimentally proven data.
- The characterizations can be used to predict novel transcriptional phenomena.

Specific Aims

- Aim I-A: To devise a calculation scheme that measures significance of a distance distribution between two TFBSs compared with background distributions
- Aim I-B: To predict interaction of TF-pairs from the distance patterns of the corresponding PWM-PWM hits
- Aim II-A: To create <u>a scoring scheme combining</u> <u>distance preference</u> of TFBS-pairs
- Aim II-B: To discriminate functional binding sites from the false positives
- Aim III: To <u>discover long-distance DNA-DNA</u> <u>interaction</u> thru TF-TF interactions


Datab ase	Category and Contents
	Promoter
EPD	experimentally determined 1871 (total 4809) human promoters sized from -499 to 100 bp http://www.epd.isb-sib.ch/ (Schmid, Perier et al. 2006)
DBTSS (v5.2.0)	30,964 huma'n promoters (425,117 TSSs) http://dbtss.hgc.jp/ (Suzuki, Yamashita et al. 2004)
PromoSer	http://biowulf.bu.edu/zlab/PromoSer/ (Halees, Leyfer et al. 2003)
	CRM
cisRed (human v2)	promoter regions sized from 1.5k to 200bp containing - 381k conserved motifs in -18k human target genes (Ensembl v31/NBCI 35) including 397 ENCODE genes; -4.5K motifs discovered in 366 of the -640 ENCODE Stanford promoters. http://www.sized.org/ (Roberton, Biblenky et al. 2006)
PReMod	~100,000 computational predicted CRMs using 481 TRANSFAC 7.2 PWMs http://genomequebec.mcgill.ca/PReMod/pages/welcome.jsp (Ferretti, Poitras et al. 2007)
TriProD	15,384 promoter sequences for tissue-specificity or according to Gene Ontology terms <u>http://tiprod.cbi.pku.edu.cn.8080/index.html</u> . (Chen, Wu et al. 2006)
High-confidence Coexpression Data	As part of the cisRED project 92472 coexpressed gene pairs for 7447 genes http://www.bcgsc.ca/project/bomge/coexpression (Griffith, Pleasance et al. 2005)
	PWM profile
TRANSFAC v9.4	774 PWMs http://www.biobase-international.com/pages/index.php?id=transfac (Wingender, Chen et al. 2001)
JASPAR.	non-red ^u ndant set of 123 profiles from published articles http://mordor.cgb.ki.se/cgi- <u>bin/jaspar2005/jaspar_db.pl</u> (Sandelin, Alkema et al. 2004)
	genome-wide p utative TFBS collections
	2,963,975 conserved (hg17mn5Rn3Canfam1)
GALA	http://gala.cse.psu.ed.w/gala/do.wnloads/hg17/conserved_tfbs/hg17Mm5Rn3Canfam1/ (Giardine, Elnitski et al. 2003)
UCSC	695,221 conserved in the human/mouse/rat alignment
	ENCODE ChIP-chip http://genome.ucsc.edu/ENCODE/encode.hg17.html
Uppsala	Hnf3β, Hnf4α, USF1 (HepG2) (Rada-Iglesias, Wallerman et al. 2005)
UT-Aus	c-Myc, E2F4 (HeLa, 2091 fibroblasts, FBS stim.) (Kim, Bhinge et al. 2005)
Yale	STAT1, c-Fos, c-Jun, BAF1 55, BAF1 70, TAF1 (HeLa) (Trinklein, Murray et al. 2004)
Stanford	Sp1, Sp3 (HCT116, Jurkat, K562) (Cawley, Bekiranov et al. 2004)
UC Davis	E2F1,c-Myc (HeLa)
GIS Affv	р53 (HCT116), STAT1 (HeLa), с-Мус (P493 B) (Ng, Weietal. 2005) СЕВРе, СТСЕ, Р300, PUI, RARA, SIRTI, Ви1

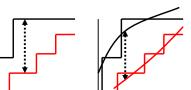
• STEP 3: Study with Smallest Samples

Aim I-A: Measure Significance of Distance Distributions

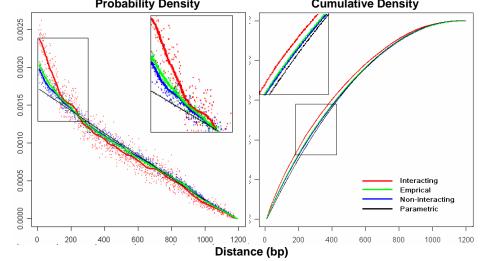
- Formulation: Binding motif *x* of TF *X* and *y* of TF Y occur in a same *s*-sized promoter of a gene group G.
- P1: What is <u>the probability of observing x</u> and y with a distance d assuming independence x and y in a random sequence?

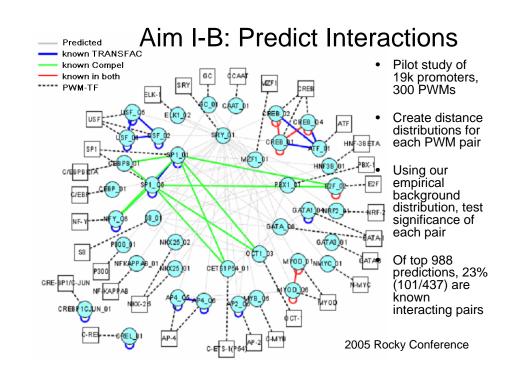
- P2: If we observe an occurrence of x and y in d, what is <u>statistical significance of</u> <u>observing >d and <d</u>?
- P3: If we observe <u>distribution D</u> between x and y along the different d's, what is statistical significance over a given null model?

Aim I-A: Previous Approaches


- P1: probability of x and y at dist d
 - Function of distance, motif length for x and y and size of promoter (Yu, Lin et al. 2006a; Yu, Lin et al. 2006b)
 - Additional term for range between d and d' (Smith, Sumazin et al. 2005a)
 - Recall: assumes random sequence model yet evidence that background sequence is not random and background distribution is not random
- P2: probability of x and y at dist <d
 - Count number of promoters with motifs x and y in sliding window of size d, compute log odds ratio versus background
 - Background by shuffling (Hannenhalli and Levy 200)
 - Background by marginal distribution (Long, Liu et al. 2004Rateitschak; Muller et al. 2004)
 - Use hypergeometric distribution so can calculate p-values (Yu, Lin et al. 2006a; Yu, Lin et al. 2006b)
 - Performance depends selection of *d* (different lengths have different backgrounds)
- P3: distributions vs given null model; motivated by above observations

Aim I-A: Proposed Approach for Creating a Background Model


- Empirical background model
 - All-to-All motif distance distributions
 - Or, non-interacting pairs
 - Non-parametric two-sample test (Kolmogorov Smirnorv test)
 - With Kernel-Based Smoothing
 - With Bootstrap


cumulative

Aim 1-A: Rationale for Importance of Empirical Background Distribution Probability Density

DATA: 14,604 RefSeqs TSS from DBTSS 5.2v; 462 PWMs in TRANSFAC 9.4v

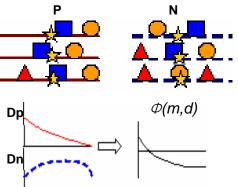
Aim I-B: PWM-pairs in a Tissue-Specific Promoters

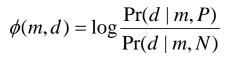
- Previous Approaches:
 - Rediscover 70% of the known proteinprotein interactions (PPIs) in Yeast (Yu et al 2006a)
 - 40% of the known PPIs in Tissuespecific Human genes (Yu et al 2006b)
 - Use combination of <u>co-occurrence</u> and distance distribution with <u>parametric</u> background model
- Pilot study of Muscle-specific PWMpairs in 46 muscle-specific genes:
 - Choose 69 out of 3,222 pairs (p-value threshold 0.0052)
 - Rediscover 34.8% (24/69) the known PPI
 - Rediscover most of known musclespecific pairs except Mef2-Mef2

pwm1	pwm 2	#BS	p-val	#gene
Myf	Spi	1844	1.35E-09	30
Myt	Ŵя	456	4.98E-08	22
Spi	Sıf	622	1.56E-05	24
Sif	Suf	72	4.22E-05	13
Sp1	Spi	8330	5.39E-05	35
Mef2	Myf	190	7.79E-05	26
Myf	Tef	200	0.004599	20
Tef	Tef	84	0.008883	12
Sp1	Tef	782	0.030254	24
Myf	Srf	131	0.058355	19
Mef2	Mef2	118	0.132712	17
Mef2	Srf	70	0.229636	20
Mef2	Sp1	620	0.27522	30
Srf	Tef	64	0.441749	17
Mef2	Tef	82	0.999958	20

Aim I-B: Consideration of PWM Similarity

- Improve the performance by distinguishing PWM types: homotypic & heterotypic using TRANSFAC v9.4
 - Homotypic pairs have similar PWM matrices
 - MatCompare program with p-value cutoff 0.05
- Compute empirical background model specific for homotypic or heterotypic
 - Overall 31% rediscovery rate of interacting pairs
 - Rediscover 53.5% of homotypic pairs

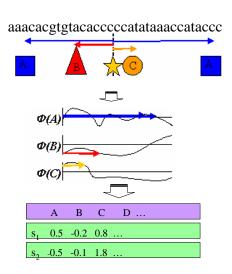

	All pairs total	All pairs significant	Interacting Significant	Interacting total	p-value threshold
Heterotypic	15227	716	29	368	6.36168e-05
Homotypic	7465	651	204	381	0.000127623


Conclusion of Pilot Study on Aim I

- Distance distribution of TFBS-pair is useful to predict interaction of TF-pair
- Empirical background model is reasonable

Aim II-A: Create Scoring Scheme Combining Distance Preferences

- Problem Formalization: Given a positive set P and a negative set N of DNA sequences, find occurrences of a target motif t in every sequence
- Using *P* and *N*, calculate distance distributions *Dp* and *Dn* of other motifs *m* to *t*
- Compute a 'distance preference' Φ(m,d) of Dp versus Dn for each distance d for motif m relative to target motif t



Aim II-A: Create Distance Features

 Given a sequence s, with target t and motif m, represent the context

 $\mathbf{x} = (x_{1s}, x_{2s}, \dots, x_{ls})$ where x_{ms} is distance preference score of m in s.

- Use context vectors as features to learn classifier on P and N
- Score new sequences

Aim II-A: Classification

- Using novel distance preference features
 - Rule based ensemble learners
 - Random forest decision trees built from random samples (randomForest library in the R2.4.0 package)
 - RuleFit ensemble of decision rules on random samples (http://www-stat.stanford.edu/~jhf/R-RuleFit.html)
 - Avoid overfitting with
 - Out-of-back (OOB) and panelizing large values of the coefficients
 - Easier interpretation
 - Importance measurement to define most influential variables
- Cross validation evaluation scheme
 - Average of Classification Errors=Average false positive and false negative rate

Aim II-B: Discriminating functional TFBSs from false positives

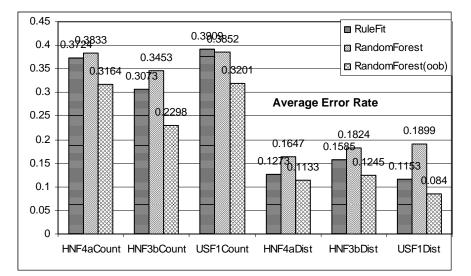
- Functional TFBSs from ChIP-chip experimental results
- False positives occur because:
 - Putative PWM scoring is error prone
 - Resolution of ChIP-based TFBSs assay (~ 500bp)
 - Indirect interactions
- False negatives occur because:
 - Too constrict threshold for scoring PWMs
 - Non-consensus motifs in a high peak region
 - Novel motifs?
 - Indirect interactions?

Aim II-B: Genome Contents

- Conventional computational algorithms to discriminating FP in a ChIP-chip dataset do not consider relation of TFBSs with complementary genomic contents (Smith, Sumazin et al. 2005b; Jin, Rabinovich et al. 2006; Macisaac, Gordon et al. 2006)
- Such as
 - Nucleosome positioning codes
 - DNase Hypersensitive sites
 - Multi species conserved regions
- Performed pilot study using genome contents on the hepatocyte transcriptional regulators (HNF4α, HNF3β, and Usf1)

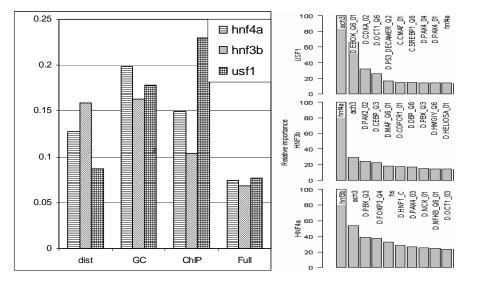
Aim II-B: Data from ENCODE (ENCyclopedia Of DNA Elements)

- ChIP-chip experimental data


 ENCODE ChIP-chip track in hg17 UCSC genome repository (Rada-Iglesias, Wallerman et al. 2005)
- Genome contents
 - Nucleosome occupancy estimation: (Segal, Fondufe-Mittendorf et al. 2006)
 - Dnase hypersensitive (HS) sites http://hgdownload.cse.ucsc.edu/goldenPath/hg17/encode/database/
 - Conserved regions: <u>http://hgdownload.cse.ucsc.edu/goldenPath/hg17/encode/database/</u>
- Putative TFBSs in ENCODE regions
 - MATCH with TRANSFAC 9.2
 - Hg17 ENCODE regions in UCSC genome browser

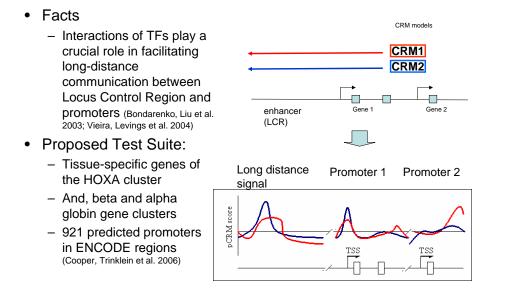
Aim II-B: Methods

- From Aim II-A:
 - Represent and score sequences using TFBS distance preference context vectors
 - Train classifier using the ChIP enriched regions thru a context of putative TFBSs using ensemble learning algorithms
- Test and compare:
 - The performance of proposed distance feature sets
 - With the reference sets: (1) count feature, (2) genome content, and other related ChIP experimental results

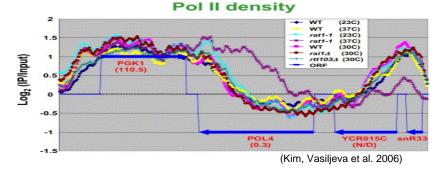

Aim II-B: Pilot Study Using Distance

Features (without Genome Contents)

Aim II-B: Pilot Study Using Distance


features (RuleFit with genomic contents)

Conclusion of Pilot Study on Aim II


- Consideration of distance patterns improve the performance of discriminating TFBSs in ChIP-enriched regions
- Genomic features are useful, but their effects depends on TFs
- This characterization would be useful to capture other ChIP-chip based signatures

Aim III: Discovering Long-distance Signals

Extensions to Pilot Studies

- Method Extension
 - Aim I-A: consideration of types of PWM-pairs
 - Aim I-B: prediction of missing CRMs without consensus motifs of s target TF
 - Aim I-C: N-way interaction
- Dataset Extension
 - Aim II-A: consideration of promoter types
 - Aim II-B: remaining ChIP experiments
 - Aim II-C: Beyond ENCODE, Mouse Genome with human CRMs;
- Integration of Diverse ChIP-chip signals
 - other genome content like PolyII elongation and termination in the yeast genome (with David Pollock, Ph.D and David Bentley, Ph.D)

