Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DEMPSTER, N. M. LAIRD and D. B. RUBIN

Harvard University and Educational Testing Service

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SEcTION on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]

SUMMARY

A broadly applicable algorithm for computing maximum likelihood estimates from
incomplete data is presented at various levels of generality. Theory showing the
monotone behaviour of the likelihood and convergence of the algorithm is derived.
Many examples are sketched, including missing value situations, applications to
grouped, censored or truncated data, finite mixture models, variance component
estimation, hyperparameter estimation, iteratively reweighted least squares and
factor analysis.
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1. INTRODUCTION

THIS paper presents a general approach to iterative computation of maximum-likelihood
estimates when the observations can be viewed as incomplete data. Since each iteration of the -
algorithm consists of an expectation step followed by a maximization step we call it the EM
algorithm. The EM process is remarkable in part because of the simplicity and generality of
the associated theory, and in part because of the wide range of examples which fall under its
umbrella. When the underlying complete data come from an exponential family whose
maximum-likelihood estimates are easily computed, then each maximization step of an EM
algorithm is likewise easily computed.
The term “incomplete data” in its general form implies the existence of two sample spaces

% and £ and a many-one mapping from Z to %/. The observed data y are a realization from %.
The corresponding x in & is not observed directly, but only indirectly through y. More
specifically, we assume there is a mapping x—y(x) from & to %/, and that x is known only to
lie in Z (y), the subset of Z determined by the equation y = y(x), where y is the observed data.
We refer to x as the complete data even though in certain examples x includes what are
traditionally called parameters.

We postulate a family of sampling densities f(x|¢) depending on parameters ¢ and derive
its corresponding family of sampling densities g(y|¢). The complete-data specification
S(...|...) is related to the incomplete-data specification g(... |...) by

2| d) = L el (L1)

The EM algorithm is directed at finding a value of ¢ which maximizes g(y| ) given an
observed y, but it does so by making essential use of the associated family f(x|¢). Notice
that given the incomplete-data specification g(y|¢), there are many possible complete-data
specifications f(x|¢) that will generate g(y| ). Sometimes a natural choice will be obvious,
at other times there may be several different ways of defining the associated f(x| ).

Each iteration of the EM algorithm involves two steps which we call the expectation step
(e-step) and the maximization step (M-step). The precise definitions of these steps, and their
associated heuristic interpretations, are given in Section 2 for successively more general types
of models. Here we shall present only a simple numerical example to give the flavour of the
method.
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Rao (1965, pp. 368-369) presents data in which 197 animals are distributed multinomially
into four categories, so that the observed data consist of

y= (yl9y2’y39y4) = (125’ 18, 20, 34)

A genetic model for the population specifies cell probabilities
G+im i1 —7),3(1 —7),1n) for some 7 with 07 <1.

Thus

n+ye+ys+yp!
Y1l el vl ya!

Rao uses the parameter 6 where 7 = (1—0)? and carries through one step of the familiar
Fisher-scoring procedure for maximizing g(y|(1 — 6)?) given the observed y. To illustrate the
EM algorithm, we represent y as incomplete data from a five-category multinomial population
where the cell probabilities are (3, 1, (1 —m), 1(1 —7), =), the idea being to split the first of
the original four categories into two categories. Thus the complete data consist of
X = (X1, Xg, X3, X3, X5) Where y; = x;+X,, Vo= Xs, V3= X4 Vs3=2X;5 and the complete data
specification is

gly|m) = G+ G —imv G —im)v ) (1.2)

(03 + x5+ X3+ x4+ x5) !
X! x5! X3! x40 x5!

Sf&x|m) =

@ Gy (G — i)™ G —dm)™ ()™ (1.3)

Note that the integral in (1.1) consists in this case of summing (1.3) over the (x;,x,) pairs
(0,125),(1,124), ...,(125,0), while simply substituting (18, 20, 34) for (xg, x4, X5).

To define the EM algorithm we show how to find 7?+1 from «‘?), where #(?) denotes the
value of = after p iterations, for p =0,1,2,.... As stated above, two steps are required. The
expectation step estimates the sufficient statistics of the complete data x, given the observed
data y. In our case, (x5, X,, X5) are known to be (18, 20, 34) so that the only sufficient statistics
that have to be estimated are x; and x, where x; +x, = y; = 125. Estimating x, and x, using
the current estimate of = leads to

3P

x{) = 125 3 and x{ =125———. (1.4)
1 2 %'l'iﬂ(p)

I+in®
The maximization step then takes the estimated complete data (x{¥),x{’,18,20,34) and

estimates 7 by maximum likelihood as though the estimated complete data were the observed
data, thus yielding

_ x{P) +34
T X 134+18+20 (1.5

o+

The BM algorithm for this example is defined by cycling back and forth between (1.4) and (1.5).

Starting from an initial value of #® = 0-5, the algorithm moved for eight steps as displayed
in Table 1. By substituting x{?’ from equation (1.4) into equation (1.5), and letting
a¥ = 7P = 7P+ we can explicitly solve a quadratic equation for the maximum-likelihood
estimate of =:

% = (15+4/(53809))/394 = 0-6268214980.

The second column in Table 1 gives the deviation #‘?’—#*, and the third column gives the
ratio of successive deviations. The ratios are essentially constant for p>3. The general theory
of Section 3 implies the type of convergence displayed in this example.
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The EM algorithm has been proposed many times in special circumstances. For example,
Hartley (1958) gave three multinomial examples similar to our illustrative example. Other
examples to be reviewed in Section 4 include methods for handling missing values in normal
models, procedures appropriate for arbitrarily censored and truncated data, and estimation

TABLE 1

The M algorithm in a simple case

P (P (P — ¥ (7' 2+ — %) o (77(P) — %)
0 0-500000000 0-126821498 0-1465

1 0-608247423 0-018574075 0-1346

2 0-624321051 0-002500447 0-1330

3 0-626488879 0-000332619 0-1328

4 0-626777323 0-000044176 0-1328

5 0-626815632 0-000005866 0-1328

6 0-626820719 0-000000779 -

7 0-626821395 0-000000104 —

8 0-626821484 0-000000014 —

methods for finite mixtures of parametric families, variance components and hyperparameters
in Bayesian prior distributions of parameters. In addition, the EM algorithm corresponds to
certain robust estimation techniques based on iteratively reweighted least squares. We
anticipate that recognition of the EM algorithm at its natural level of generality will lead to new
and useful examples, possibly including the general approach to truncated data proposed in
Section 4.2 and the factor-analysis algorithms proposed in Section 4.7.

Some of the theory underlying the EM algorithm was presented by Orchard and Woodbury
(1972), and by Sundberg (1976), and some has remained buried in the literature of special
examples, notably in Baum ez al. (1970). After defining the algorithm in Section 2, we
demonstrate in Section 3 the key results which assert that successive iterations always increase
the likelihood, and that convergence implies a stationary point of the likelihood. We give
sufficient conditions for convergence and also here a general description of the rate of con-
vergence of the algorithm close to a stationary point.

Although our discussion is almost entirely within the maximum-likelihood framework, the
EM technique and theory can be equally easily applied to finding the mode of the posterior
distribution in a Bayesian framework. The extension required for this application appears
at the ends of Sections 2 and 3.

2. DEFINITIONS OF THE EM ALGORITHM

We now define the EM algorithm, starting with cases that have strong restrictions on the
complete-data specification f(x|¢), then presenting more general definitions applicable when
these restrictions are partially removed in two stages. Although the theory of Section 3
applies at the most general level, the simplicity of description and computational procedure,
and thus the appeal and usefulness, of the EM algorithm are greater at the more restricted levels.

Suppose first that f(x|¢) has the regular exponential-family form

f(x| ) = b(x) exp (pt(x)T)/a(), @10

where ¢ denotes a 1 x r vector parameter, t(x) denotes a 1 x r vector of complete-data sufficient
statistics and the superscript T denotes matrix transpose. The term regular means here that ¢
is restricted only to an r-dimensional convex set Q such that (2.1) defines a density for all ¢
in Q. The parameterization ¢ in (2.1) is thus unique up to an arbitrary non-singular rxr
linear transformation, as is the corresponding choice of t(x). Such parameters are often called
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natural parameters, although in familiar examples the conventional parameters are often
non-linear functions of ¢. For example, in binomial sampling, the conventional parameter
and the natural parameter ¢ are related by the formula ¢ = logz/(1—=). In Section 2, we
adhere to the natural parameter representation for ¢ when dealing with exponential families,
while in Section 4 we mainly choose conventional representations. We note that in (2.1) the
sample space Z° over which f(x|¢) >0 is the same for all ¢ in Q.

We now present a simple characterization of the EM algorithm which can usually be applied
when (2.1) holds. Suppose that ¢® denotes the current value of ¢ after p cycles of the
algorithm. The next cycle can be described in two steps, as follows:

E-step. Estimate the complete-data sufficient statistics t(x) by finding

t® = E@tx)]y, o). 22)
M-step: Determine ¢+ as the solution of the equations
Et(x)|d) =t 2.3)

Equations (2.3) are the familiar form of the likelihood equations for maximum-likelihood
estimation given data from a regular exponential family. That is, if we were to suppose that
t®) represents the sufficient statistics computed from an observed x drawn from (2.1), then
equations (2.3) usually define the maximum-likelihood estimator of ¢». Note that for given x,
maximizing logf(x| ) = —loga(d)+1log b(x)+ t(x)T is equivalent to maximizing

—loga(dp)+ pt(x)T

which depends on x only through t(x). Hence it is easily seen that equations (2.3) define the
usual condition for maximizing —loga(db)+ t®»)T whether or not t») computed from (2.2)
represents a value of t(x) associated with any x in Z. In the example of Section 1, the compo-
nents of x are integer-valued, while their expectations at each step usually are not.

A difficulty with the M-step is that equations (2.3) are not always solvable for ¢ in Q. In
such cases, the maximizing value of ¢ lies on the boundary of Q and a more general definition,
as given below, must be used. However, if equations (2.3) can be solved for ¢ in Q, then the
solution is unique due to the well-known convexity property of the log-likelihood for regular
exponential families.

Before proceeding to less restricted cases, we digress to explain why repeated application
of the e- and M-steps leads ultimately to the value ¢* of ¢ that maximizes

L($) =logg(y| &), (2.4

where g(y|d) is defined from (1.1) and (2.1). Formal convergence properties of the EM
algorithm are given in Section 3 in the general case.
First, we introduce notation for the conditional density of x given y and ¢, namely,

k(x|y, ) = f(x| $)/g(v| ) 2.9)
so that (2.4) can be written in the useful form
L() = log /(x| b)—logk(x|y, $). @9
For exponential families, we note that
k(x|y, $) = b(x) exp ($t(x)")/a(¢]y), 2.7

where

a|y) = L(y)b(x) exp (X)) dx. @8
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Thus, we see that f(x|¢) and k(x|y, ) both represent exponential families with the same
natural parameters ¢ and the same sufficient statistics t(x), but are defined over different
sample spaces Z and Z(y). We may now write (2.6) in the form

L(¢) = —loga(dp)+loga(db|y), 2.9)
where the parallel to (2.8) is
a(P) = Lb(x) exp (dt(x)T) dx. (2.10)
By parallel differentiations of (2.10) and (2.8) we obtain, denoting t(x) by t,
Dloga(d) = (9/o)loga(d) = E(t| d) (2.11)
and, similarly,
Dloga(d|y) = Et]y, d), 2.12)
whence
DL($) = — Et| )+ E(t]y, §). 2.13)

Thus the derivatives of the log-likelihood have an attractive representation as the difference of
an unconditional and a conditional expectation of the sufficient statistics. Formula (2.13) is
the key to understanding the E- and M-steps of the EM algorithm, for if the algorithm converges
to ¢*, so that in the limit P = P+ = *, then combining (2.2) and (2.3) leads to
E(t|$%) = E(t]y, $*) or DL($) = 0 at & = ¢*.

The striking representation (2.13) has been noticed in special cases by many authors.
Examples will be mentioned in Section 4. The general form of (2.13) was given by Sundberg
(1974) who ascribed it to unpublished 1966 lecture notes of Martin-L6f. We note, paren-
thetically, that Sundberg went on to differentiate (2.10) and (2.8) repeatedly, obtaining

D¥a(¢) = a($) E(t*|d) }
D¥a(|y) = a(d|y) Et*]y, ),

where D* denotes the k-way array of kth derivative operators and t* denotes the corresponding
k-way array of kth degree monomials. From (2.14), Sundberg obtained

DF¥loga(dp) = K*(t| d) }

D¥loga(d|y) = KX (t]y, $),
where K* denotes the k-way array of kth cumulants, so that finally he expressed

D" L(¢p) = —KK(t| ) + Kk(t]y, ). 2.16)

Thus, derivatives of any order of the log-likelihood can be expressed as a difference between
conditional and unconditional cumulants of the sufficient statistics. In particular, when k = 2,
formula (2.16) expressed the second-derivative matrix of the log-likelihood as a difference of
covariance matrices.

We now proceed to consider more general definitions of the EM algorithm. Our second
level of generality assumes that the complete-data specification is not a regular exponential
family as assumed above, but a curved exponential family. In this case, the representation
(2.1) can still be used, but the parameters ¢ must lie in a curved submanifold Q, of the
r-dimensional convex region Q. The E-step of the EM algorithm can still be defined as above,
but Sundberg’s formulae no longer apply directly, so we must replace the M-step by:

M-step: Determine ¢®+1) to be a value of ¢ in Q, which maximizes —loga(¢p)+ t®@T,

and (2.14)

and (2.15)
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In other words, the M-step is now characterized as maximizing the likelihood assuming that
x yields sufficient statistics t?). We remark that the above extended definition of the m-step,
with Q substituted for Q,, is appropriate for those regular exponential family cases where
equations (2.3) cannot be solved for ¢ in Q.

The final level of generality omits all reference to exponential families. Here we introduce
a new function

0(¢'| $) = E(log /(x| )]y, ), (217

which we assume to exist for all pairs (¢', ). In particular, we assume that f(x| ) >0 almost
everywhere in Z for all $€Q. We now define the EM iteration ¢ @+ as follows:
E-step: Compute Q(¢p | ).
M-step: Choose ¢+ to be a value of ¢ €Q which maximizes Q(¢ | d®).
The heuristic idea here is that we would like to choose ¢* to maximize logf(x|¢). Since we
do not know logf(x| ), we maximize instead its current expectation given the data y and
the current fit ¢®,

In the special case of exponential families

0| $) = —loga) + EGM)y, &P) + ),

so that maximizing Q(¢ | ) is equivalent to maximizing —loga(d)+ pt®T, as in the more
specialized definitions of the M-step. The exponential family E-step given by (2.2) is in
principle simpler than the general e-step. In the general case, O(¢ | p®’) must be computed
for all ¢ e, while for exponential families we need only compute the expectations of the
r components of t(x).t '

The EM algorithm is easily modified to produce the posterior mode of ¢ in place of the
maximum likelihood estimate of ¢». Denoting the log of the prior density by G(d), we simply
maximize Q(¢p|d®)+G(d) at the M-step of the (p+ 1)st iteration. The general theory of
Section 3 implies that L(¢)+ G(¢) is increasing at each iteration and provides an expression
for the rate of convergence. In cases where G() is chosen from a standard conjugate family,
such as an inverse gamma prior for variance components, it commonly happens that
O(b|d®) +G(¢) has the same functional form as Q(cb| @) alone, and therefore is maxi-
mized in the same manner as Q(¢| ).

3. GENERAL PROPERTIES

Some basic results applicable to the EM algorithm are collected in this section. As through-
out the paper, we assume that the observable y is fixed and known. We conclude Section 3
with a brief review of literature on the theory of the algorithm.

In addition to previously established notation, it will be convenient to write

H(d'| $) = E(logk(x|y, )|y, d), @1
so that, from (2.4), (2.5) and (2.17),
0(9'|d) = L($) + H(d'| ). (32
Lemma 1. For any pair (¢, d) in Qx Q,
H@'|$)< HD| ), (3.3)

with equality if and only if k(x|y, ¢") = k(x|y, ) almost everywhere.
Proof. Formula (3.3) is a well-known consequence of Jensen’s inequality. See formulae
(le.5.6) and (le.6.6) of Rao (1965).

t A referee has pointed out that our use of the term “algorithm™ can be criticized because we do not
specify the sequence of computing steps actually required to carry out a single E- or M-step. It is evident that
detailed implementations vary widely in complexity and feasibility.
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To define a particular instance of an iterative algorithm requires only that we list the
sequence of values @ —»>p® > @ ... starting from a specific . In general, however,
the term ‘‘iterative algorithm” means a rule applicable to any starting point, i.e. a mapping
¢ —>M(¢) from Q to Q such that each step ¢®) - P+ js defined by

G = M), (3.4)

Definition. An iterative algorithm with mapping M(¢) is a generalized EM algorithm (a
GEM algorithm) if

OM(d)| d) > 0(d| P) (3.5
for every ¢ in Q.
Note that the definitions of the EM algorithm given in Section 2 require
oM(d)| )= 0’| ) (3.6

for every pair (¢’, ) in Qx Q, i.e. &’ = M(¢) maximizes Q(¢’| ).
Theorem 1. For every GEM algorithm

LM(p))=L(dp) forall peQ, 3.7
where equality holds if and only if both
OM(P)|P) = 0(d| ) (3.3
and
k(x|y, M($)) = k(x|y, $) (39

almost everywhere.
Proof.

LM($) —L(P) = {OM(D) | d)— 0($| d)} +{H(P|d) - HM(P)|$)}.  (3.10)

For every GEM algorithm, the difference in Q functions above is >0. By Lemma 1, the
difference in H functions is greater than or equal to zero with equality if and only if
k(x|y, d) = k(x|y, M(cd)) almost everywhere.

Corollary 1. Suppose for some ¢*eQ, L(d*)>L(d) for all Q. Then for every GEM
algorithm,

(@) LM($™) = L(9*),
d(b) OM(d*)|d*) = 0(d*|d*)
(©) k(x|y,M(d*) = k(x|y, $*) almost everywhere.

Corollary 2. If for some ¢*eQ, L(p*)>L(d) for all deQ such that b +#*, then for
every GEM algorithm

an

M($*) = d*.
Theorem 2. Suppose that ¢? for p=0,1,2,... is an instance of a GEM algorithm such
that:

(1) the sequence L(¢‘?) is bounded, and

) Q(pP | d®)— (P | pP) > NP+ — pP) (dP+) — bP)T for some scalar A>0
and all p.

Then the sequence ‘P’ converges to some ¢ * in the closure of Q.
Proof. From assumption (1) and Theorem 1, the sequence L(¢‘?)) converges to some
L*<oo, Hence, for any >0, there exists a p(e) such that, for all p>p(e) and all r>1,

SULGET) - LGOI} = L)~ L) <e. @3.11)
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From Lemma 1 and (3.10), we have
0< Q(ptetn I ¢(p+j—1)) —Q(pr+i-D I Pty L(¢(p+j)) —L(pP+i-D),
for j>1, and hence from (3.11) we have
z’; {Q(pP+D)| pP+H-1) — O(P+H-D| P H-D)} < ¢, (3.12)
i=1

for all p>p(e) and all »> 1, where each term in the sum is non-negative.
Applying assumption (2) in the theorem for p, p+1, p+2,..., p+r—1 and summing, we
obtain from (3.12) _

&> )\é (¢(p+:i) — ¢(p+:i—1)) (pP+9 — pp+i-D)T, (3.13)
j=1
whence
e> Aplpn _¢.(p)) (ptrtn _d,(p))’r’ (3.14)

as required to prove convergence of ¢®) to some ¢*.

Theorem 1 implies that L(¢) is non-decreasing on each iteration of a GEM algorithm, and is
strictly increasing on any iteration such that Q(p@+1| p) > QO(p®| ). The corollaries
imply that a maximum-likelihood estimate is a fixed point of a GEM algorithm. Theorem 2
provides the conditions under which an instance of a GEM algorithm converges. But these
results stop short of implying convergence to a maximum-likelihood estimator. To exhibit
conditions under which convergence to maximum likelihood obtains, it is natural to introduce
continuity and differentiability conditions. Henceforth in this Section we assume that Q
is a region in ordinary real r-space, and we assume the existence and continuity of a
sufficient number of derivatives of the functions Q(¢’| ), L(d), H(d'| d) and M() to justify
the Taylor-series expansions used. We also assume that differentiation and expectation
operations can be interchanged.

Familiar properties of the score function are given in the following lemma, where V... |...]
denotes a conditional covariance operator.

Lemma 2. For all ¢ in Q,

E[-é%logk(xly, )|y, ¢] =D"H($|$)=0 (3.15)
and
V[a—z;logk(XIy, Py, d>] = D" H($|d) = —DX H(db|P). (3.16)

Proof. These results follow from the definition (3.1) and by differentiating

|, rxly.4pax=1
Z(y)

under the integral sign.
Theorem 3. Suppose & p=0,1,2,... is an instance of a GEM algorithm such that

Do Q(¢(p+1)|¢(p)) =0.

Then for all p, there exists a ¢+ on the line segment joining ¢® to @+ such that

Q(¢(p+1) I (b(p)) - Q(¢(z)) I 4)(2))) = — (¢(p+l) —_ 4)(11)) D20 Q(¢(()p+1)l ¢(p)) (¢(p+1) - ¢(p))’1‘. (3.17)

Furthermore, if the sequence D20 Q(¢{P+1| d(®)) is negative definite with eigenvalues bounded
away from zero, and L(¢?’) is bounded, then the sequence ¢‘?? converges to some ¢* in the
closure of Q.
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Proof. Expand Q(¢| $?) about ¢P+D to obtain
O(]HP) = QP+ ) + (p— G2 +1) DI Q241 | (Y
+(p— @) D O(b{p+ | bP)) (b — pP+)T

for some ¢{P+? on the line segment joining ¢ and P+, Let ¢ = ¢® and apply the assump-
tion of the theorem to obtain (3.17).

If the D Q(p{P+ | pP)) are negative definite with eigenvalues bounded away from zero,
then condition (2) of Theorem 2 is satisfied and the sequence ¢ converges to some ¢* in
the closure of Q since we assume L(¢‘®) is bounded.

Theorem 4. Suppose that ¢ p =0,1,2,... is an instance of a GEM algorithm such that

(1) & converges to ¢* in the closure of Q,
(2) D Q(¢(p+1) ¢?) =0 and
(3) D2 Q(PP+1)| p!P) is negative definite with eigenvalues bounded away from zero.

Then

DL(p*) =0, (3.18)
D? Q(p*|db*) is negative definite
and
DM(¢*) = D* H($p*| $*) [D* O(d*| )] 2. (3.19)
Proof. From (3.2) we have
DL(¢p»+)) = — D10 H(¢(p+1)|¢(p))+1)1o O(prt I $@). (3.20)

The second term on the right-hand side of (3.20) is zero by assumption (2), while the first term
is zero in the limit as p oo by (3.15), and hence (3.18) is established. Similarly, D% Q(p*| *)
is negative definite, since it is the limit of D* Q(¢®+1)| $®)) whose eigenvalues are bounded
away from zero. Finally, expanding

D Q(dhy | ,) = DX Q(p*| %)+ (chy — 6*) D2 O(b* | b¥) + (b — S*) D2 O(p* | $*) ..,
(3.21)
and substituting ¢, = $P) and ¢, = $P*), we obtain
0= (@ -$NDIOG* 6N +PP-$NDI OGN +....  (.22)
Since ¢P+1) = M(h?)) and d* = M(¢*) we obtain in the limit from (3.22)
0 = DM($*) D™ O(¢*| b*)+ D1 Q(p*| ). (3.23)

Formula (3.19) follows from (3.2) and (3.16).
The assumptions of Theorems 3 and 4 can easily be verified in many instances where the
complete-data model is a regular exponential family. Here, letting ¢ denote the natural

parameters,
D*Q(¢|$®) = —V(t|d) (3.24)

so that if the eigenvalues of V(t|¢) are bounded above zero on some path joining all @),
the sequence converges. Note in this case that

D¥ H(*|*) = - V(t]y, $*), (3.25)

whence
DM(*) = V(t|y, d*) V(t| d*)™. (3.26)
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In almost all applications, the limiting ¢* specified in Theorem 2 will occur at a local, if
not global, maximum of L(¢). An exception could occur if DM(¢*) should have eigenvalues
exceeding unity. Then ¢* could be a saddle point of L(¢), for certain convergent ¢»
leading to ¢* could exist which were orthogonal in the limit to the eigenvectors of DM(¢*)
associated with the large eigenvalues. Note that, if ¢ were given a small random perturbation
away from a saddle point ¢*, then the M algorithm would diverge from the saddle point.
Generally, therefore, we expect D?L(¢*) to be negative semidefinite, if not negative definite,
in which cases the eigenvalues of DM(¢*) all lie on [0, 1] or [0, 1), respectively. In view of the
equality, D* L(¢$*) = (I—DM(d*)) D® O(d*| d*), an eigenvalue of DM(¢p*) which is unity
in a neighbourhood of ¢* implies a ridge in L(¢) through ¢*.

It is easy to create examples where the parameters of the model are identifiable from the
complete data, but not identifiable from the incomplete data. The factor analysis example of
Section 4.7 provides such a case, where the factors are determined only up to an arbitrary
orthogonal transformation by the incomplete data. In these cases, L(¢) has a ridge of local
maxima including ¢ = ¢*. Theorem 2 can be used to prove that EM algorithms converge
to particular ¢* in a ridge, and do not move idenfinitely in a ridge.

When the eigenvalues of DM(¢*) are all less than 1, the largest such eigenvalue gives the
rate of convergence of the algorithm. It is clear from (3.19) and (3.2) that the rate of conver-
gence depends directly on the relative sizes of D2L(¢p*) and D® H(p*|d*). Note that
—D2L(¢*) is a measure of the information in the data y about ¢, while — D H(d*|p*)is an
expected or Fisher information in the unobserved part of x about ¢. Thus, if the information
loss due to incompleteness is small, then the algorithm converges rapidly. The fraction of
information loss may vary across different components of ¢, suggesting that certain com-
ponents of ¢ may approach ¢* rapidly using the em algorithm, while other components may
require many iterations.

We now compute the rate of convergence for the example presented in Section 1. Here the
relevant quantities may be computed in a straightforward manner as

DX Q(n' | 7) = —{E(xy| 7, ¥) + y}/n"2— (o) (1 — =)
and

D H(x'|m) = — E(xy| m, y) /72 +y,/ 2 + 7).

Substituting the value of 7* computed in Section 1 and using (3.19) we find DM(#*)==0-132778.
This value may be verified empirically via Table 1.

In some cases, it may be desirable to try to speed the convergence of the EM algorithm.
One way, requiring additional storage, is to use second derivatives in order to a Newton-step.
These derivatives can be approximated numerically by using data from past iterations giving
the empirical rate of convergence (Aitken’s acceleration process when ¢ has only one com-
ponent), or by using equation (3.19), or (3.26) in the case of regular exponential families,
together with an estimate of ¢*.

Another possible way to reduce computation when the M-step is difficult is simply to increase
the Q function rather than maximize it at each iteration. A final possibility arises with missing
data patterns such that factors of the likelihood have their own distinct collections of para-
meters (Rubin, 1974). Since the proportion of missing data is less in each factor than in the
full likelihood, the EM algorithm applied to each factor will converge more rapidly than when
applied to the full likelihood.

Lemma 1 and its consequence Theorem 1 were presented by Baum ez al. (1970) in an
unusual special case (see Section 4.3 below), but apparently without recognition of the broad
generality of their argument. Beale and Little (1975) also made use of Jensen’s inequality, but
in connection with theorems about stationary points. Aspects of the theory consequent on
our Lemma 2 were derived by Woodbury (1971) and Orchard and Woodbury (1972) in a
general framework, but their concern was with a “principle” rather than with the EM algorithm
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which they use but do not focus on directly. Convergence of the EM algorithm in special cases
is discussed by Hartley and Hocking (1971) and by Sundberg (1976). We note that Hartley
and Hocking must rule out ridges in L(¢) as a condition of their convergence theorem.

When finding the posterior mode, the rate of convergence is given by replacing
D2 Q(p*| *) in equation (3-15) by D Q(d*|b*)+D?G(b*) where G is the log of the
prior density of ¢. In practice, we would expect an informative prior to decrease the amount
of missing information, and hence increase the rate of convergence.

4, EXAMPLES

Subsections 4.1-4.7 display common statistical analyses where the EM algorithm either has
been or can be used. In each subsection, we specify the model and sketch enough details to
allow the interested reader to derive the associated E- and M-steps, but we do not study the
individual algorithms in detail, or investigate the rate of convergence. The very large literature
on incomplete data is selectively reviewed, to include only papers which discuss the EM
algorithm or closely related theory. The range of potentially useful applications is much
broader than presented here, for instance, including specialized variance components models,
models with discrete or continuous latent variables, and problems of missing values in general
parametric models. :

4.1. Missing Data

Our general model involves incomplete data, and therefore includes the problem of
accidental or unintended missing data. Formally, we need to assume that (a) & is a priori
independent of the parameters of the missing data process, and (b) the missing data are
missing at random (Rubin, 1976). Roughly speaking, the second condition eliminates cases
in which the missing values are missing because of the values that would have been observed.

We discuss here three situations which have been extensively treated in the literature, namely
the multinomial model, the normal linear model and the multivariate normal model. In the
first two cases, the sufficient statistics for the complete-data problem are linear in the data,
so that the estimation step in the EM algorithm is equivalent to a procedure which first
estimates or “fills in” the individual data points and then computes the sufficient statistics
using filled-in values. In the third example, such direct filling in is not appropriate because
some of the sufficient statistics are quadratic in the data values.

4.1.1. Multinomial sampling

The EM algorithm was explicitly introduced by Hartley (1958) as a procedure for calculating
maximum likelihood estimates given a random sample of size n from a discrete population
where some of the observations are assigned not to individual cells but to aggregates of cells.
The numerical example in Section 1 is such a case. In a variation on the missing-data problem,
Carter and Myers (1973) proposed the EM algorithm for maximum likelihood estimation from
linear combinations of discrete probability functions, using linear combinations of Poisson
random variables as an example. The algorithm was also recently suggested by Brown (1974)
for computing the maximum-likelihood estimates of expected cell frequencies under an
independence model in a two-way table with some missing cells, and by Fienberg and Chen
(1976) for the special case of cross-classified data with some observations only partially
classified.

We can think of the complete data as an n X p matrix x whose (i,) element is unity if the
ith unit belongs in the jth of p possible cells, and is zero otherwise. The ith row of x contains
p—1 zeros and one unity, but if the ith unit has incomplete data, some of the indicators in
the ith row of x are observed to be zero, while the others are missing and we know only that
one of them must be unity. The E-step then assigns to the missing indicators fractions that
sum to unity within each unit, the assigned values being expectations given the current estimate
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of ¢. The M-step then becomes the usual estimation of ¢ from the observed and assigned
values of the indicators summed over the units.

In practice, it is convenient to collect together those units with the same pattern of missing
indicators, since the filled in fractional counts will be the same for each; hence one may think
of the procedure as filling in estimated counts for each of the missing cells within each group
of units having the same pattern of missing data.

Hartley (1958) treated two restricted multinomial cases, namely, sampling from a Poisson
population and sampling from a binomial population. In these cases, as in the example of
Section 1, there is a further reduction to minimal sufficient statistics beyond the cell frequencies.
Such a further reduction is not required by the EM algorithm.

4.1.2. Normal linear model

The BM algorithm has often been used for least-squares estimation in analysis of variance
designs, or equivalently for maximum-likelihood estimation under the normal linear model
with given residual variance o2, whatever the value of 0% A basic reference is Healy and
Westmacott (1956). The key idea is that exact least-squares computations are easily performed
for special design matrices which incorporate the requisite balance and orthogonality properties,
while least-squares computations for unbalanced designs require the inversion of a large matrix.
Thus where the lack of balance is due to missing data, it is natural to fill in the missing values
with their expectations given current parameter values (E-step), then re-estimate parameters
using a simple least-squares algorithm (M-step), and iterate until the estimates exhibit no
important change. More generally, it may be possible to add rows to a given design matrix,
which were never present in the real world, in such a way that the least-squares analysis is
facilitated. The procedure provides an example of the EM algorithm. The general theory of
Section 3 shows that the procedure converges to the maximum-likelihood estimators of the
design parameters. The estimation of variance in normal linear models is discussed in
Section 4.4.

4.1.3. Multivariate normal sampling

A common problem with multivariate “continuous” data is that different individuals are
observed on different subsets of a complete set of variables. When the data are a sample from
a multivariate normal population, there do not exist explicit closed-form expressions for the
maximum-likelihood estimates of the means, variances and covariances of the normal popu-
lation, except in cases discussed by Rubin (1974). Orchard and Woodbury (1972) and Beale
and Little (1975) have described a cyclic algorithm for maximum-likelihood estimates,
motivated by what Orchard and Woodbury call a “missing information principle”. Apart
from details of specific implementation, their algorithm is an example of the EM algorithm
and we believe that understanding of their method is greatly facilitated by regarding it as
first estimating sufficient statistics and then using the simple complete-data algorithm on the
estimated sufficient statistics to obtain parameter estimates.

We sketch here only enough details to outline the scope of the required calculations. Given
a complete n X p data matrix x of p variables on each of » individuals, the sufficient statistics
consist of p linear statistics, which are column sums of x, and 3p(p+ 1) quadratic statistics,
which are the sums of squares and sums of products corresponding to each column and pairs
of columns of x. Given a partially observed x, it is necessary to replace the missing parts of
the sums and sums of squares and products by their conditional expectations given the observed
data and current fitted population parameters. Thus, for each row of x which contains missing
values we must compute the means, mean squares and mean products of the missing values
given the observed values in that row. The main computational burden is to find the para-
meters of the conditional multivariate normal distribution of the missing values given the
observed values in that row. In practice, the rows are grouped to have a common pattern of
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missing data within groups, since the required conditional normal has the same parameters
within each group.

The e-step is completed by accumulating over all patterns of missing data; whereupon the
M-step is immediate from the estimated first and second sample moments. The same general
principles can be used to write down estimation procedures for the linear model with multi-
variate normal responses, where the missing data are in the response or dependent variables
but not in the independent variables.

4.2. Grouping, Censoring and Truncation

Data from repeated sampling are often reported in grouped or censored form, either for
convenience, when it is felt that finer reporting conveys no important information, or from
necessity, when experimental conditions or measuring devices permit sample points to be
trapped only within specified limits. When measuring devices fail to report even the number
of sample points in certain ranges, the data are said to be truncated. Grouping and censoring
clearly fall within the definition of incomplete data given in Section 1, but so also does
truncation, if we regard the unknown number of missing sample points along with their
values as being part of the complete data.

A general representation for this type of example postulates repeated draws of an observable
z from a sample space & which is partitioned into mutually exclusive and exhaustive subsets
20 23, .--, 2. We suppose that (a) observations 2y, Zy, ..., ,,, are fully reported for the 7,
draws which fall in 2, (b) only the numbers n,,n,,...,n,_; of sample draws falling in
2,2, ..., %, are reported and (c) even the number of draws falling in the truncation
region Z;is unknown. The observed data thus consist of y = (n, z,), where n = (ny, 1y, ..., 7,_;)
and zy = (Zy1, Zgps ---» Zgp,)- We denote by n = ny+n, + ... +n,_, the size of the sample, excluding
the unknown number of truncated points.

To define a family of sampling densities for the observed data y = (n, z,), we postulate a
family of densities A(z| ) over the full space &, and we write

P(d) = fgh(zlcb)dz fori=0,1,...,t—1,

and P(¢}) = Y51 P(d). For given ¢, we suppose that n has the multinomial distribution
defined by » draws from ¢ categories with probabilities P;(¢p)/P(¢) for i =0,1,...,¢—1, and
given n, we treat z, as a random sample of size 7, from the density 4(z|b)/Py() over Z,,.

Thus
S R N

A natural complete-data specification associated with (4.2.1) is to postulate —1 further
independent random samples, conditional on given n and <&, namely z,,2,,...,7, ;, where
Z; = (Z41,Zs9; ---» Z;,,) denotes n; independent draws from the density A(z| $)/P, () over Z;,
for i=1,2,...,t—1. At this point we could declare x = (n,2y,2,,...,7,_,), and proceed to
invoke the EM machinery to maximize (4.2.1). If we did so, we would have

_ -1 =1 ng h(zi'lcb)
fx|$) = (n! r=[0 n; !) I=10 ,El (7(’;;)—) 4.2.2)

which is equivalent to regarding

(Zo1> Zogs -+ > Zon)s Za1> Zags - zt—l,n,-l)

as a random sample of size n from the truncated family 4(z|d)/P(d) over & — %, The
drawback to the use of (4.2.2) in many standard examples is that maximum likelihood
estimates from a truncated family are not expressible in closed form, so that the M-step of
the EM algorithm itself requires an iterative procedure.
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We propose therefore a further extension of the complete data x to include truncated
sample points. We denote by m the number of truncated sample points. Given m, we suppose
that the truncated sample values z, = (2, s, .., Z,,) are a random sample of size m from the
density h(z|b)/(1—P(d)) over Z,. Finally we suppose that m has the negative-binomial
density

tonl @) = ("7 a -y (@23

form=0,1,2, ..., conditional on given (n,z, z,, ...,2,_;). We now have
X=(0,2,2y,...,2_y,M,Z)
whose associated sampling density given ¢ is
-1 m+n—1\.t
fx[d) = (n! / II n,-!) ( ) IT I1 A(z55| ). 4.2.49)
i=0 m i=0j=1

The use of (4.2.3) can be regarded simply as a device to produce desired results, namely, (i)
the g(y| ¢) implied by (4.2.4) is given by (4.2.1), and (ii) the complete-data likelihood implied
by (4.2.4) is the same as that obtained by regarding the components of zy, z,, ..., 2, as a random
sample of size n+m from h(z|$) on Z.

The E-step of the EM algorithm applied to (4.2.4) requires us to calculate

0($| ™) = E(logf(x| )|y, ).

Since the combinatorial factors in (4.2.4) do not involve ¢, we can as well substitute

logf(x|b) = % 3 logh(z,,| ). @.2.5)
=0 j=1

Since the z,; values are part of the observed y, the expectation of the i =0 term in (4.2.5)
given y and $'® is simply

3 log h(zes| ).
j=1

For the terms i = 1,2, ...,£—1, i.e. the terms corresponding to grouping or censoring,

E(}g logh(z;;| )|y, tl)‘p’) = n,-f log h(z| ) h(z| d) dz. (4.2.6)
=1 Zi

For the term i = ¢ corresponding to truncation, the expression (4.2.6) still holds except that
m = n; is unknown and must be replaced by its expectation under (4.2.3), so that

E(/zf,llog h(z;| )]y, ¢.(m) = [n/P($p®)] L log h(z| ) h(z| ) dz. @.2.7)

In cases where A(z|¢) has exponential-family form with r sufficient statistics, the integrals
in (4.2.6) and (4.2.7) need not be computed for all ¢, since log 4(z| &) is linear in the r sufficient
statistics. Furthermore, Q(¢p| ) can be described via estimated sufficient statistics for a
(hypothetical) complete sample. Thus, the M-step of the Em algorithm reduces to ordinary
maximum likelihood given the sufficient statistics from a random sample from A(z| ) over
the full sample space &. Note that the size of the complete random sample is

n-+E(m|n, @) = n+n{l—P(GP)}/P($P) = n[P($?). “4.28)

Two immediate extensions of the foregoing theory serve to illustrate the power and
flexibility of the technique. First, the partition which defines grouping, censoring and
truncation need not remain constant across sample units. An appropriate complete-data
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model can be specified for the observed sample units associated with each partition and the
O-function for all units is found by adding over these collections of units. Second, independent
and non-identically distributed observables, as in regression models, are easily incorporated.
Both extensions can be handled simultaneously.

The familiar probit model of quantal assay illustrates the first extension. An experimental
animal is assumed to live (y = 0) or die (y = 1), according as its unobserved tolerance z exceeds
or fails to exceed a presented stimulus S. Thus the tolerance z is censored both above and
below S. The probit model assumes an unobserved random sample z,,z,,...,z, from a
normal distribution with unknown mean p and variance o2, while the observed indicators
Y15 Yos ---» ¥, Provide data censored at various stimulus levels Sy, S,, ..., S,, which are supposed
determined a priori and known. The details of the EM algorithm are straightforward and are
not pursued here. Notation and relevant formulas may be found in Mantel and Greenhouse
(1967) whose purpose was to remark on the special interpretation of the likelihood equations
which is given in our general formula (2.13).

There is a very extensive literature on grouping, censoring and truncation, but only a few
papers explicitly formulate the EM algorithm. An interesting early example is Grundy (1952)
who deals with univariate normal sampling and who uses a Taylor series expansion to approxi-
mate the integrals required to handle grouping into narrow class intervals. A key paper is
Blight (1970) which treats exponential families in general, and explicitly recognizes the
appealing two-step interpretation of each EM iteration. Efron (1967) proposed the EM algorithm
for singly censored data, and Turnbull (1974, 1976) extended Efron’s approach to arbitrarily
grouped, censored and truncated data.

Although Grundy and Blight formally include truncation in their discussion, they appear to
be suggesting the first level of complete-data modelling, as in (4.2.2), rather than the second
level, as in (4.2.4). The second-level specification was used in special cases by Hartley (1958)
and Irwin (1959, 1963). Irwin ascribes the idea to McKendrick (1926). The special cases
concern truncated zero-frequency counts for Poisson and negative-binomial samples. The
device of assigning a negative-binomial distribution to the number of truncated sample points
was not explicitly formulated by these authors, and the idea of sampling z,,,2,,, ..., ;,, from
the region of truncation does not arise in their special case.

4.3. Finite Mixtures

Suppose that an observable y is represented as n observations y = (y;,¥s; .., ¥,)- Suppose
further that there exists a finite set of R states, and that each y, is associated with an unobserved
state. Thus, there exists an unobserved vector z = (2,2, ..., Z,), Where z, is the indicator
vector of length R whose components are all zero except for one equal to unity indicating the
unobserved state associated with y,. Defining the complete data to be x = (y, z), we see that
the theory of Sections 2 and 3 applies for quite general specification /(x| ).

A natural way to conceptualize mixture specifications is to think first of the marginal
distribution of the indicators z, and then to specify the distribution of y given z. With the
exception of one concluding example, we assume throughout Section 4.3 that z,,z,, ..., z,, are
independently and identically drawn from a density o(...|d). We further assume there is a
set of R densities u(...|r, &) for r = (1,0,...,0),(0,1,0,...,0),...,(0, ...,0, 1) such that the A2
given z; are conditionally independent with densities u(...|z;, ). Finally, denoting

U(yi I ¢) = (IOg u(y'il (13 0’ LEEH] 0)’ Cb), log u(y'z I (0’ 19 eeey 0): ¢), ceey IOg u(y’l,l (09 09 eeey l)’ d’))
(4.3.1)
and ‘
V() = (logv((1,0, ..., 0)| §), logv((0, 1, ..., 0)| ), ...., log (0, 0, ..., 1)| b)),
4.3.2)
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we can express the complete-data log-likelihood as

n

logf(x| ) = 32U )+ Sz V(). 43.3)

i=1

Since the complete-data log-likelihood is linear in the components of each z;, the E-step
of the EM algorithm requires us to estimate the components of z; given the observed y and
the current fitted parameters. These estimated components of z; are simply the current
conditional probabilities that y, belongs to each of the R states. In many examples, the ¢
parameters of u(...| &) and o(...| d) are unrelated, so that the first and second terms in (4.3.3)
may be maximized separately. The M-step is then equivalent to the complete-data maximi-
zation for the problem except that each observation y; contributes to the log-likelihood
associated with each of the R states, with weights given by the R estimated components of z;,
and the counts in the R states are the sums of the estimated components of the z,.

The most widely studied examples of this formulation concern random samples from a
mixture of normal distributions or other standard families. Hasselblad (1966) discussed
mixtures of R normals, and subsequently Hasselblad (1969) treated more general random
sampling models, giving as examples mixtures of Poissons, binomials and exponentials. Day
(1969) considered mixtures of two multivariate normal populations with a common unknown
covariance matrix, while Wolfe (1970) studied mixtures of binomials and mixtures of arbitrary
multivariate normal distributions. Except that Wolfe (1970) referred to Hasselblad (1966), all
these authors apparently worked independently. Although they did not differentiate with
respect to natural exponential-family parameters, which would have produced derivatives
directly in the appealing form (2.13), they all manipulated the likelihood equations into this
form and recognized the simple interpretation in terms of unconditional and conditional
moments. Further, they all suggested the EM algorithm. For his special case, Day (1969)
noticed that the estimated marginal mean and covariance are constant across iterations, so
that the implementation of the algorithm can be streamlined. All offered practical advice on
various aspects of the algorithm, such as initial estimates, rates of convergence and multiple
solutions to the likelihood equations. Wolfe (1970) suggested the use of Aitken’s acceleration
process to improve the rate of convergence. Hasselblad (1966, 1969) reported that in
practice the procedure always increased the likelihood, but none of the authors proved this
fact.

Two further papers in the same vein are by Hosmer (1973a, b). The first of these reported
pessimistic simulation results on the small-sample mean squared error of the maximum-
likelihood estimates for univariate normal mixtures, while the second studied the situation
where independent samples are available from two normal populations, along with a sample
from an unknown mixture of the two populations. The EM algorithm was developed for the
special case of the second paper.

Haberman (1976) presented an interesting example which includes both multinomial
missing values (Section 3.1.1) and finite mixtures: sampling from a multiway contingency
table where the population cell frequencies are specified by a log-linear model. An especially
interesting case arises when the incompleteness of the data is defined by the absence of all
data on one factor. In effect, the observed data are drawn from a lower-order contingency
table which is an unknown mixture of the tables corresponding to levels of the unobserved
factor. These models include the clustering or latent-structure models discussed by Wolfe
(1970), but permit more general and quite complex finite-mixture models, depending on the
complexity of the complete-data log-linear model. Haberman showed for his type of data that
each iteration of the EM algorithm increases the likelihood.

Orchard and Woodbury (1972) discussed finite-mixture problems in a non-exponential-
family framework. These authors also drew attention to an early paper by Ceppellini et al.
(1955) who developed maximum likelihood and the EM algorithm for a class of finite-mixture
problems arising in genetics.
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Finally, we mention another independent special derivation of the EM method for finite
mixtures developed in a series of papers (Baum and Eagon, 1967; Baum et al., 1970; Baum,
1972). Their model is unusual in that the » indicators z,, zy, ..., Z,, are not independently and
identically distributed, but rather are specified to follow a Markov chain. The complete-data
likelihood given by (4.3.3) must be modified by replacing the second term by 37z V¥*()z,_,
where V*(¢) is the matrix of transition probabilities and z, is a known vector of initial state
probabilities for the Markov chain.

4.4. Variance Components
In this section we discuss maximum-likelihood estimation of variance components in
mixed-model analysis of variance. We begin with the case of all random components and
then extend to the case of some fixed components.
Suppose that A is a fixed and known »n x r “design” matrix, and that y is an n x 1 vector
of observables obtained by the linear transformation

y = Ax (4.4.1)

from an unobserved rx 1 vector x. Suppose further that A and x are correspondingly parti-
tioned into

A = (Al’ A2, cesy Ak+1) (4.4.2)
and
x=(x{,x3,...,X} )7, (4.4.3)

where A; and x; have dimensions nx r; and r;x1fori=1,2,...,k+1, and where ¥ r, =r.
Suppose that the complete-data specification asserts that the x; are independently distributed,
and

X;~N(,020), i=1,...k+]1, (4.4.4)

where the o? are unknown parameters. The corresponding incomplete-data specification,
implied by (1.1), asserts that y is normally distributed with mean vector zero and covariance
matrix

Z=01Z1+03 T+ ..+ 0% 11 Zpp,

where the Z; = A;AT are fixed and known. The task is to estimate the unknown variance
components 0%, 03,...,0% ;.

As described, the model is a natural candidate for estimation by the EM algorithm. In
practice, however, the framework usually arises in the context of linear models where the
relevance of incomplete-data concepts is at first sight remote. Suppose that A;,, =I and
that we rewrite (4.4.1) in the form

k
Y= Z]_Ai X; + X41. (4.4. 5)
=

Then we may interpret y as a response vector from a linear model where (A;, A,, ..., A;)
represents a partition of the design matrix, (X;, X, ..., X;) represents a partition of the vector
of regression coefficients and x,,, represents the vector of discrepancies of y from linear
behaviour. The normal linear model assumes that the components of x;.,, are independent
N(0,0%) distributed, as we have assumed with o®=o0%,,. Making the x,X,,...,X; also
normally distributed, as we did above, converts the model from a fixed effects model to a
random effects model.

When the model is viewed as an exponential family of the form (2.1), the sufficient statistics
are

t(X) = (XT Xq, X] Xy, .y Xy g Xpp1)- (4.4.6)
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The e-step requires us to calculate the conditional expectations of z; = X7 x; given y and the
current o{?%, for i =1,2,...,k+1. Standard methods can be used to compute the mean p.{)
and covariance Z{?) of the conditional normal distributions of the x;, given y and the current
parameters, from the joint normal distribution specified by (4.4.1)-(4.4.4) with ¢{?)? in place
of o?. Then the conditional expectations of X7 x; are

t;:p) = p-;:p) p.&”’T+tr Z%p)_ (4'4.7)

The m-step of the EM algorithm is then trivial since the maximum-likelihood estimators of
the o2 given #{P) are simply

o2 =¢P)p, fori=1,2,...,k+1. (4.4.8)

Random effects models can be viewed as a special subclass of mixed models where the
fixed effects are absent. To define a general mixed model, suppose that x; in (4.4.3) defines
unknown fixed parameters, while X,,X;,...,X;,; are randomly distributed as above. Then
the observed data y have a normal distribution with mean vector p. and covariance matrix Z,
where

k41
p=Ax;, and Z= Y o?Z,. 4.4.9)
i=2

Maximum likelihood estimates of x;,02,...,0%,, can be obtained by the EM method where
(X35 Xg, ..., Xz,41) are regarded as missing. We do not pursue the details, but we note that the
iterative algorithm presented by Hartley and Rao (1967) for the mixed model is essentially
the EM algorithm.

An alternative approach to the mixed model is to use a pure random effects analysis
except that o, is fixed at co. Again the EM algorithm can be used. It can be shown that the
estimates of oy, 03, ...,0;,, found in this way are identical to those described by Patterson
and Thompson (1971), Corbeil and Searle (1976) and Harville (1977) under the label REML,
or “restricted” maximum likelihood.

4.5. Hyperparameter Estimation

Suppose that a vector of observables, y, has a statistical specification given by a family
of densities /(y|0) while the parameters 8 themselves have a specification given by the family
of densities /(0| ¢) depending on another level of parameters ¢ called the hyperparameters.
Typically, the number of components in ¢ is substantially less than the number of components
in 8. Such a model fits naturally into our incomplete data formulation when we take x = (y, 0).
Indeed, the random effect model studied in (4.4.5) is an example, where we take 6 to be
(Xy, Xo, .-, Xz, 02) and ¢ to be (0%, 0%, ...,02).

Bayesian models provide a large fertile area for the development of further examples.
Traditional Bayesian inference requires a specific prior density for 6, say 4(8| &) for a specific ¢.
When A(0| ) is regarded as a family of prior densities, a fully Bayesian approach requires a
“hyperprior” density for ¢. Section 3 pointed out that the EM algorithm can be used to find
the posterior mode for such problems. An ad hoc simplification of the fully Bayesian approach
involves inferences about 8 being drawn using the prior density h(6| &) with & replaced by a
point estimate ¢. These procedures are often called empirical Bayes’ procedures. Many
examples and a discussion of their properties may be found in Maritz (1964). Other examples
involving the use of point estimates of ¢ are found in Mosteller and Wallace (1965), Good
(1967) and Efron and Morris (1975).

A straightforward application of the EM algorithm computes the maximum-likelihood
estimate of ¢ from the marginal density of the data g(y| ), here defined as

g(y|d) = f@l(ylﬂ)h(ﬂlcb)de
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for @€ @. The E-step tells us to estimate log /(x| ) = log/(y| 0) +log (8| ) by its conditional
expectation given y and ¢ = ). For the M-step, we maximize this expectation over .
When the densities 4(8|d) form an exponential family with sufficient statistics ¢(8), then
(x| d) is again an exponential family with sufficient statistics t(0), regardless of the form of
I(y| 8), whence the two steps of the EM algorithm reduce to (2.2) and (2.3).

It is interesting that the EM algorithm appears in the Bayesian literature in Good (1956),
who apparently found it appealing on intuitive grounds but did not recognize the connection
with maximum likelihood. He later (Good, 1965) discussed estimation of hyperparameters
by maximum likelihood for the multinomial-Dirichlet model, but without using EM.

4.6. Iteratively Reweighted Least Squares

For certain models, the EM algorithm becomes iteratively reweighted least squares.
Specifically, lety = (3, ..., ¥,,) be a random sample from a population such that (y;— u)4/(¢;)/c
has a N(0, 1) distribution conditional on g;, and q = (g;, ...,4,,) is an independently, identically
distributed sample from the density A(g;) on ¢g;>0. When g, is unobserved, the marginal
density of y; has the form given by (1.1) and we may apply the EM algorithm to estimate u and
0% As an example, when /(g,) defines a x2 distribution, then the marginal distribution of y;
is alinearly transformed ¢ with r degrees of freedom. Other examples of “normal/independent”
densities, such as the “normal/ uniform” or the contaminated normal distribution may be
found in Chapter 4 of Andrews et al. (1972).

First suppose A(g,) is free of unknown parameters. Then the density of x = (y, q) forms
an exponential family with sufficient statistics Y, y%g;, X, y;4; and >,g;. When q is observed
the maximum likelihood estimates of x and o? are obtained from a sample of size n by simple
weighted least squares:

~ n n
B=2y:9:[ X4:
1=1 i=1

4.6.1)
0= 30i—pPadn.

When q is not observed, we may apply the EM algorithm:

E-step: Estimate (3 y2q;, > ¥:9: 2 4,) by its expectation given y, u® and o(®)2,
M-step Use the estimated sufficient statistics to compute u?+1) and ¢P+12,

These steps may be expressed simply in terms of equations (4.6.1), indexing the left-hand sides
by (p+1), and substituting

wi = E(q;|ys, B, 897 4.6.2)

for g; on the right-hand side. The effect of not observing q is to change the simple weighted
least-squares equations to iteratively reweighted least-squares equations.
We remark that w; is easy to find for some densities 4(g;). For example, if

h(g) = (B*/T(«)) g3~  exp (—Bq,) (4.6.3)
for o, B,g;>0, then h(g;|y; n®, o'®2) has the same gamma form with « and B replaced by
o* = a+3% and BF = B+4(y;— p'?)?/o'P2, whence

w; = o*/Bf.
To obtain a contaminated normal, we may set
oy if 9= ky,
hge) ={ o ifg;=k,
0 otherwise,
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where a;>0, o+ oy = 1. Then

2 2
Wy = zlk§ oy €Xp (—2z4) / jzlkj o; €xp (—zy),
i= =
where

24y = Gi— WP {20773,

If h(q;) is uniform on (a,b), then A(g;|y;, u'®), o'®) is simply proportional to the density of y,
given g;, u?’ and o', Since this conditional density of y; is N(u‘®, 0'®2/q,), h(q;|y;, p?’, o®?)
has the form given in (4.6.3) with a<g;<b, o =3 and 8 = (y;—p®)?/{20'P2}, In this last
example, computation of w; requires evaluation of incomplete gamma functions.

We may also allow 4(g;) to depend on unknown parameters, say A, which must be estimated
with u and o2 For example, when A(q;) is x2 with unknown r, then r must be estimated.
If A is distinct from p and o2, then the complete-data log-likelihood, and hence

O(u, 0% A I p'?), g2 ()

is the sum of two pieces, one depending only on (u,o?), the other depending only on A.
Implementing the Em algorithm by maximizing Q(...|...) again leads to iteratively reweighted
least squares for p®+1) and p®+12, with additional equations for A(P+1),

4.7. Factor Analysis

In our final class of examples, interest focuses on the dependence of p observed variables
on g<p unobserved “latent” variables or “factors”. When both sets of variables are con-
tinuous and the observed variables are assumed to have a linear regression on the factors,
the model is commonly called factor analysis. Our discussion using the Em algorithm applies
when the variables are normally distributed.

More specifically, let y be the nx p observed data matrix and z be the nx g unobserved
factor-score matrix. Then x = (y,z), where the rows of x are independently and identically
distributed. The marginal distribution of each row of z is normal with mean (0, ..., 0), variance
(1,...,1) and correlation R. The conditional distribution of the ith row of y given z is normal
with mean a+ (z; and residual covariance 7% = diag(s4, ..., 73), where z, is the ith row of z.
Note that given the factors the variables are independent. The parameters ¢ thus consist of
a, B and 72 The regression coefficient matrix @ is commonly called the factor-loading matrix
and the residual variances 72 are commonly called the uniquenesses.

Two cases are defined by further restrictions on @ and/or R. In the first case, B is
unrestricted and R = I. In the second case, restrictions are placed on B (a priori zeroes), and
the requirement that R = I is possibly relaxed so that some of the correlations among the
factors are to be estimated. See Joreskog (1969) for examples and discussion of these models.
It is sometimes desirable to place a prior distribution on the uniquenesses to avoid the
occurrence of zero estimates (Martin and McDonald, 1975).

If the factors were observed, the computation of the maximum-likelihood estimates of ¢
would follow from the usual least-squares computations based on the sums, sums of squares,
and sum of cross-products of x. Let (¥,Z) be the sample mean vector and

[ C?I?I Cilz ]
Czy CEZ
be the sample cross-products matrix of x. Then the maximum-likelihood estimate of o is
simply § while the maximum-likelihood estimates of the factor loadings and uniqueness for
the jth variable follow from the regression of that variable on the factors. Note that the
calculations of these parameters may involve different sets of factors for different observed
variables reflecting the a priori zeros in B. The matrix R is estimated from C,, (and Z); if
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restrictions are placed on R, special complete-data maximum-likelihood techniques may have
to be used (Dempster, 1972). We have thus described the M-step of the algorithm, namely, the
computation of the maximum-likelihood estimate of ¢ from complete data. The algorithm
can be easily adapted to obtain the posterior mode when prior distributions are assigned to the
uniqueness.

The E-step of the algorithm requires us to calculate the expected value of C,, and C,,
given the current estimated ¢ (Z is always estimated as 0). This computation is again a
standard least-squares computation: we estimate the regression coefficients of the factors on
the variables assuming the current estimated ¢ found from the m-step.

Thus the resultant EM-algorithm consists of “back and forth” least-squares calculations on
the cross-products matrix of all variables (with the M-step supplemented in cases of special
restrictions on R). Apparently, the method has not been previously proposed, even though it
is quite straightforward and can handle many cases using only familiar computations.
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DISCUSSION ON THE PAPER BY PROFESSOR DEMPSTER, PROFESSOR LAIRD AND DR RUBIN

E. M. L. BeaLE (Scicon Computer Services Ltd and Scientific Control Systems Ltd): It gives
me great pleasure to open the discussion of this lucid and scholarly paper on an important topic,
and to thank all three authors for crossing the Atlantic to present it to us. The topic is in many
ways a deceptive one, so it is hardly surprising that earlier authors have seen only parts of it.
I therefore thought it might be useful to relate the development of Dr Little’s and my understanding
of the subject. We were studying multiple linear regression with missing values, and we developed
an iterative algorithm that worked well in simulation experiments. We justified it on the grounds
that it produced consistent estimates, but we were not clear about its relation to maximum likeli-
hood. And when we saw Orchard and Woodbury’s paper we had difficulty in understanding it.
You must make allowance for the fact that at the time Rod Little was a young Ph.D. student,
with a mere one-day-a-week visiting professor for a supervisor. Our difficulty was essentially a



