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Overview

© Explanation of what we do

@ Mitochondrial genomics: a pilot project

© PLEX: Context-dependent evolutionary
genomics in a practical time frame

© Coevolution of transcription factors and
their binding sites: an example
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Oxidative Phosphorylation

Complex I Complex II Complex III Complex I¥ Complex ¥

’

2H*
O

ATP synthase

NADH dehydrogenase {Escherichia coli)

{Thermus themophilus)

PR P P gy o DR,

Fumarate reductase
(E.coli)

O O F1 unit
ZH* H20

Cytochrome ¢ oxidase
Cytochrome bel complex (bovine)
{bovine)

O
1
-0z

ATP H20

Nuclear 35 4 10 10 12
MtDNA: 7 0 1 3 2




Molecular Evolution

Structure, Function & Rates

© Conserved sites correspond to structurally or functionally
important residues

Changes in evolutionary rates correspond to:

~ Synonymous rates (dS) are compared to non-
synonymous rates (dN) as a “neutral” standard.

1
UN*—=pu

N
© Convergence is a sign of adaptive importance, and is
rare at the molecular level

Coevolution is usually distributed among many sites,
often weak




Positive Selection in Snake
Mitochondria

@ Standard programs strongly indicate
positive selection in proteins throughout
the mitochondria

'Especially cytochrome oxidase subunit | and
cytochrome b (the hearts of complex IV and

1)

© Concern over “saturation”, inaccurate
models
'Focus on transversions




Amphibians
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There is very little in
tetrapod mtDNA that
Is not functional

Implies selection to
remove junk

Most snake mtDNA
genes are short

Implies even
stronger selection to
reduce excess
nucleotide length
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Duplicate Control Regions (CR) in Most
Snake mtDNA

Origin of genome replication and bidirectional transcription initiation

Control Region 1 125 rRNA Control Region 1 12S rRNA

NADH6

NADHS Most snakes
L ~17,500 bp

Tetrapods

NADH5

~16,600 bp

NADH4

§ A
K o Are the duplicate oo
i N tRNA
An extra ~1000+ bp of DNA control regions A
functional? Is there ATP Synthase
. . ) Cytochrome Oxidase
Concerted evolution adaptive relevance’ Cytochrome bel

NADH:Ubiquinone Ocidocreductase

(96'1 OO% |dent|Ca|) Control region



Typical Mitochondrial Genome
Replication (single control reaion)
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Accelerated Evolution Early in Snake Evolution
at Conserved Sites and Genome-wide

Replacements at sites otherwise conserved across tetrapods
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Unique Site Replacements

Positively selected sites along Alethinophidian and Ancestral Snake branches
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Predicted Function of Channels
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Unique Sites

ltered Iin snakes

» Otherwise conserved across most
tetrapods

> Focus on sites most likely to be
functionally relevant (limit numbers)
» Associated with coevolving site pairs

® Coevolution in snake mtDNA is very high
& 22% of site pairs at p<0.01




Unique Residue Clusters

Cluster Number Residues Ca Distance Location

1 35L-371-54Y 5.0 A* 10.6 A* H Channel
2 443Y — 447Y 6.7 A* H Channel
3 256A — 258V 5.6 A* K Channel
4 266E — 267P 3.8 A* K Channel
5 26A — 108S 119 A D Channel
6 205G — 231Y 6.3 A* O, Delivery
7 299V —-301T 55 A* O, Delivery

8 194L — 281G 6.9 A* O, Delivery




Coevolution is Usually Distributed

Not USUa”y StrOng
pairwise

Oftentimes adjacent
to function or binding

Pollock and Wang,

2005, 2007

® Yeang and Haussler,
2007
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Channel D (Direct Coupling)

Loss of Polarity, then Recovery?
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Channel D (Direct Coupling)

Convergence and Reversion
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Channel D (Direct Coupling)

Repeated Convergence (and a reversion)
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Channel D in Rhineura
a distantly-related legless tubular squamate
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Channel H: Exclusive Pumping,
Indirect Coupling

Controversial function is shut down
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Controversy over channel H

- Is it really used?
- Which of two different paths is it?

Y447F  Y443F

Snakes go out of their way to completely destroy all possible outlets
of the alternative Channel H; tyrosine (Y) to Phenylalanine (F)
substitutions are usually quite rare



Channel K: Proton Delivery to
Reaction Center

Not shut down; increase in positive charge at entrance

“ 1257V #N491S  L492T

_ —e— ——» | eptolyphlops I
: 6 1254V T488M N491D  L492]| Typhlops
S/T489K' Boa
‘ Cylindrophis

v3igl
‘ Python
Xenopeltis

elpiyd
=099]09S

‘

‘ T488K L492V.
&’ 318 le
A E266N N491H

256 H256S

P 266
v
&, 490 0.1 sub./site

488 489 [ ]

Acrochordus
Agkistrodon
Ovophis
Pantherophis
Dinodon

T

elpiydoulyjaly



Channel K in Rhineura

Not shut down; increase in positive charge at entrance
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Snakes a Model for Extreme Adaptation
Metabolism — Physiology - Venom

Aerobic Metabolism

One of the lowest basal metabolic rates
Highest fluctuation between basal and max
Fluctuations of 40-fold in 48 hours

\ -
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/ \




Snakes a Model for Extreme Adaptation
Metabolism — Physiology - Venom

= Aerobic Metabolism
Physiological Remodeling to Digest Prey

Heart muscle - may enlarge 50%

Liver — may enlarge 100%
Y Gut - may enlarge 100 - 150%

A vertebrate model of extreme
Secor & Diamond physiological regulation

N t 1 998 Stephen M. Secor & Jared Diamond
a U r e y Department of Physiology, University of California Medical School, Los Angeles, California 90095-1751, USA
k i tric! m t respo amplitude: mamm
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Snakes a Model for Extreme Adaptation
Metabolism — Physiology - Venom

Y Aerobic Metabolism
> Physiological Remodeling

Diverse arsenal of deadly venom proteins

Widespread adaptive evolution of venom
proteins




Massive Multi-Protein Adaptation

v"Most extreme adaptation known in metabolic proteins
v"Molecular coevolution — best example known
v'"Molecular convergence
v'Shift in mitochondrial function

v'Increase proton flow to the reaction center?
v'Likely important for metabolic fluctuations in snakes

v'"Microevolutinary event - macroevolutionary adaptation




Snakes a Model for Extreme Adaptation
Metabolism — Physiology - Venom

Y Aerobic Metabolism
> Physiological Remodeling

=> Fossorial and inactive

» => Terrestrial and capable of switching from
iInactive to very active




3FTx
Acetylcholinesterase
ADAM

CNP-BPP

Cytokine (FAM 3B)
Factor V

Factor X

Kunitz

L-amino Oxidase
Lectin

PLA, (Type IB)

PLA, (Type IIA)
Sarafotoxin

VEGF = LA

Toxin types sequenced from both
mandibular and maxillary glands

Toxin types currently sequenced only

from Iguania and Serpentes maxillary

glands
Toxin types currently sequenced only

from Anguimorpha mandibular glands

Toxin types currently sequenced only
from Serpentes maxillary glands

waglerin (I[111[1]1

Waprin Exendin

Serpentes @: @

e
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AVIT—— Lethal factor 1
BNP |
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CVF *
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NGF Vespryn LA2—Iguanua

Teiioidea
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VENOM CLADE

Did Venom Play a
Role?

Snake venom genes were present
(and expressed in salivary glands) in
lizards PRIOR to snake evolution

A broad arsenal of amazingly toxic
proteins evolved only in some
snakes

Venom is also one of the main
known causes of accelerated or
diversifying evolution



Snake / Lizard Phylogeny

Outgroups

Sphenodon punctatus

Teratoscincus keyserlingii

Geckko gecko | Gekkonidae

72

Cordylus warreni . \
. Eumeces egregius | Scincoidea

Lacerta viridis

89

Rhineura floridana

Bipes biporus Ampbisbaenia

Anoalis carolinensis
Sceloporus occidentalis

Diplometopon zarudnyi
Emphisbaena schmidti
Geocalamus acutus

SOW.IO}I487E]

Iguanidae

Abronia graminea
Ophisaurus attnuatus
Shinisaurus crocodilurus

Anguimorpha

Varanus komodoensis
Acrodonta

Morphological and
Nuclear Data
strongly disagree
with mtDNA-based
trees

Note: mtDNA tree is
based on 12,000 bp!

Snakes
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Fast Sites Converge a Little Bit

Predicted by Neutral Convergence




Converged Sites Evolved Slowly
Consistent with Adaptive Convergence

o
F




Screening Convergent Sites Restores

Nuclear Tree
top 5% of convergent sites were screened

Sphenadon punctatus
Geckao gecko

cincus keyserlingii

l: Eumeces egreqgivs
Cordylus warreni
Rhineura floridana

Lacerta viridis
Bipes biporus AmphiSbaenia

Diglometopan zarudny

Ceacalamus acutus
Amphisbaena schmidt

Varants komadensis

Shinisaurus cr

Abronia graminea

Xenagama unicelor Agamidae

Ophisaurus attnuatus

|
Pogona vitticepes

L

Sceloporus occidentaliz

lguana iguana
’ Iguanidae

Anolis carolinensis
Typhlogs mirus

{R;n' photyphlops australis
Leptotyphlops dulcis

Tropidophis

_': Anlius

Xenapeltis unicalar

Python regius

Cylindrophis ruffus

Eunccies natacus

Boa constriciar
Pantherophis quttatus

Dinedon semicarinatus
Ovoghis okinavensis

Agkistradon piscivorus

Acrochordus granulatus




Ruggedness, Dimensionality,
and Changing Landscapes

Figure l. Alternative views of potential protein adaptive landscapes. In (A), the protein adaptive landscape is viewed as being like an arrét ridge, with
only a single narrow path leading from the current adaptive peak in the foreground to a new adaptive peak in the distance. This landscape is conducive
to convergence. In (B), the adaptive landscape is viewed as being like rolling hills, with many alternative routes to nearby adaptive hilltops that are

not substantially different from one another. With so many alternative paths and alternative similar hilltops, under this scenario sequences would be
unlikely to converge (i.e., follow the same path) even under similar adaptive pressure.




PLEX: Context-dependent
evolutionary genomics in a
practical time frame

€ Large phylogenomic datasets now common
Parametric inference with realistic evolutionary models
IS (was) computationally burdensome

© MCMC + data augmentation of ancestral states
and substitution histories can be extremely fast

Augmentation step is (was) a major performance
bottleneck (>99% of computation)

© Order of magnitude speed improvements and
excellent scaling can be achieved
partially sampling substitution histories




PNAS

Mutation-selection models of coding sequence
evolution with site-heterogeneous amino acid
fitness profiles

Nicolas Rodrigue®', Hervé Philippe®, and Nicolas Lartillot®

2Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada; and "Department of Biochemistry, Centre Robert Cedergren, Université de
Montréal, Montréal, Québec, H3C 3J7 Canada

Edited by David M. Hillis, University of Texas at Austin, Austin, TX, and approved January 27, 2010 (received for review September 24, 2009)

in some cases we study here. Although the empirical mixture
approaches can provide less taxing models, the Bayes factors
reported above (computed using pruning-based sampling) still
required over 2 months of CPU time. It is thus of interest to advance
further computational methods, both to ameliorate our current
data-augmentation-based sampler and to bridge this type of MCMC
sampling with our thermodynamic integration methods.




Time Complexity of Integrated Likelihood
Calculations on a Phylogeny




Time Complexity of Integrated Likelihood
Calculations on a Phylogeny

(N states, b branches between nodes, s sites)
4 3 2
O(N + Nb+ N bs)

Substitution Ancestral
Histories States

Calculation gets overwhelming with increased complexity

Spatial Variation (many rate matrices) 0(N4S + N3bS + szs)

Gradient Mixture Models
Context dependence
O(N4 +N°b+ szs)
Temporal Variation

Markov-modulated codon models N 1is very large

Switching selection regimes (e.g., 183 x 183)



Time Complexity Using Data Augmentation

/ N /. \ /.
“~eo \\Q
Complete sampling in Partial sampling in
continuous time continuous time

(Nielsen, Rodrigue, Lartillot) (de Koning et al. 2010)

“Don’t need to use fully “Don’t need to fully
integrated likelihood sample the timing of
calculations” substitution either”
Likelihood: O(N 2) O(N 2)

Sampler: O(N4 + N°b+ N°bs + Nbs) + more O(Nb' S) bs=ph



Likelihood Analysis at the Speed of
Parsimony

Blu (t<0.08) | [/

PhyloBayes 110
Mr Bayes 837

/28

Time to analyse 224 taxon dataset, GTR model(100,000 generations of MCMC)




Dramatically Improved Scaling

Standard
Model Likelihood Blu Speedup
DNA 1000 sec || sec (100x)

Amino Acid 7.5 hrs | 7 sec (1600x)
Codon 2 months |2 min (7000x)

Much better than using “exotic” computation strategies:
GPU speedup is only ~100x for codon models
(Suchard & Rambaut 2009)



Posterior Parameter Distributions
GTR, mammalian cyt-b

Full

B1u

Full  Bfu (t<0.08) B1u (t<0.02)
10 taxa -7,586.47 -7,586.90

224 taxa -99,391.12 -99,542.03 -99,446.88




Evaluating Changes in Rate and
Branch Length

© Classic likelihood calculations
4 3 9)
O(N + N°b+ N b)
© Sampled substitution histories
(1)

Branch lengths and rate parameters can be
evaluated separately and have analytically
solvable posterior distributions




Thermodynamic Integration




Pairwise Coevolution Approaches

Mutual information Phylogenetic / likelihood
Gloor et al Yeang and
(2005) Korber et al | Haussler (2007)

(1993)
Pollock et al.
(1999)
Dimmic et al
(2005)
Tree and model ignorant Phylogenetic & model-based
Fast and easy Slow and hard
Popular! Feared!
P(i,j)

MI = ng(i, Nlog PP



Mutual information methods are misled by:
(1) Phylogeny

Observed Frequencies
V: 9/11 = 82%
A: 2111 =18%

Actual Time Spent
V: 3.3/6.9=48%
A: 3.6/6.9=52%

(2) Molecular
Evolution



Phylogenetically-integrated Ml (pMiI)

otherwise

[ P (xi = uls) P(z: = yil (tw — 5)) P (x; = ;1) P(2; = y|(ty = s)) 4.
P(x; — yilty) P(xj— yjlty)

=24 cases

Unrestricted non-reversible amino-acid substitution with
gamma-distributed rate variation among sites

Posterior-predictive null distribution for automated significance
testing

Fast! Roughly 6,200 pairs of sites per second (Yeang and
Haussler 2008: 29.35 seconds per site pair on a slower CPU):

————— ® approximate corrected speed-up about 100,000X



Work In Progress

— Context dependent nucleotide substitution

= Amino acid mixture models (dependent rates)
= Overlaid nucleotide and fitness models

D Gradient mixture models

Whole molecule fitness
@ Transcription factors and binding sites
Protein stability and function




Summary

© Partial sampling of substitution histories with B1u
integration eliminates the most burdensome aspect
of MCMC based phylogenomic analysis

@ Accuracy is high; precision can be tuned by
decreasing the threshold of branch bisection

© Should largely alleviate the pressure for
convenience-motivated simplifications

Acknowledgements: Jason de Koning, Wanjun Gu, Todd Castoe;
Richard Goldstein, Nicolas Rodrigue
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TF binding modifications
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TF binding modifications
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Occurrence Freq
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Adaptation, Coevolution and
Convergence

© Normal non-Adaptive Evolution

© Adaptive evolution drives a different
mode of coevolution and convergence






