
Deterministic models for an evolving transcription factor and its binding sites

We consider the case where a transcription factor protein SP has two variants, SPA and SPC .
Protein SPA originally represents the wild-type allele, while mutant protein SPC first arises in a
single individual at generation t = 0. These two transcription factors recognize different binding
sequences, denoted as BOXA and BOXC , respectively. We assume some adaptive benefit for the
mutant protein SPC to bind to BOXC , and our goal is to determine the course of events by which
the frequency of allele SPC as well as the frequencies of BOXA and BOXC change within the
population over the course of evolution.

We model only sequences for which binding of the SP protein is beneficial. For the wild-type
variant SPA, a promoter containing BOXA has the relative fitness 1. The binding of mutant SPC
to BOXC has an adaptive advantage, so that promoters containing BOXC in the presence of SPC
have a relative fitness 1 + sC (where sC > 0). Since we consider only genes for which SP protein
binding is beneficial, promoters without BOXA in the presence of SPA and without BOXC in the
presence of SPC have a lower relative fitness, given by 1− s0 (s0 > 1).

We allow both BOXA and BOXC to be present in the same promoter, each either present or
absent at a given gene. Thus, there are four possible haplotypes for each promoter: that containing
no binding sites (h0), those with only BOXA (hA), those with only BOXC (hC), and those containing
both binding sequences (hAC). We will set the frequencies for these haplotypes to be y0, yA, yC ,
and yAC , respectively, where y0 + yA + yC + yAC = 1. We denote the frequency of SPA and SPC
within the population to be p and q, respectively, where again p+ q = 1.

Thus, for a given gene in an individual, there exist several possible phenotypes, which we denote
as Hi,j for i, j ∈ {0, A,C,AC}. The fitness wi,j of each of these phenotypes is given in Table 1.
Given the current frequency yx of haplotype x within the population (where x ∈ {0, A,C,AC}),
the new frequency y′x of haplotype x in the next generation is given by

y′x =
yx

∑
j∈{0,A,C,AC} yjwx,j∑

i,j∈{0,A,C,AC} yiyjwi,j
(1)

Also of interest is the change in frequency of the SP protein alleles within the population, i.e.,
the change in p and q over time. The possible phenotypes of the SP protein are AA, AC, and CC.
If we let WA,A, WA,C , and WC,C be the fitnesses of each of these phenotypes, respectively, then we

Phenotypes (Hi,j) Fitness (wi,j)
H0,0 1− s0
H0,A p2 + 2pq + q2(1− s0)
HA,A

H0,C p2(1− s0) + (2pq + q2)(1 + sC)
HC,C

H0,AC p2 + (2pq + q2)(1 + sC)
HA,C

HA,AC

HC,AC

HAC,AC

Table 1: Relative fitness values for individual promoter phenotypes.
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see that

p′ =
p2WA,A + pqWA,C

p2WA,A + 2pqWA,C + q2WC,C
(2)

and

q′ =
q2WC,C + pqWA,C

p2WA,A + 2pqWA,C + q2WC,C
(3)

We note that the fitnesses WA,A, WA,C , and WC,C are determined by the frequencies of binding
sites BOXA and BOXC across genes within the population. We let G represent the set of L
genes considered, where G = {g1, g2, ..., gL}. Each gene gi then has a corresponding frequency of
binding site alleles, y0(gi), yA(gi), yC(gi), and yAC(gi). Assuming Hardy-Weinberg equilibrium, the
expected numbers LA and LC of genes containing BOXA and BOXC , respectively, are

LA =
L∑
i=1

[yA(gi) + yAC(gi)]
2 + 2[yA(gi) + yAC(gi)][y0(gi) + yC(gi)] (4)

LC =
L∑
i=1

[yC(gi) + yAC(gi)]
2 + 2[yC(gi) + yAC(gi)][y0(gi) + yA(gi)] (5)

We then calculate WA,A, WA,C , and WC,C assuming multiplicative fitnesses across loci:

WA,A = (1)LA(1− s0)L−LA (6)

WA,C = (1 + sC)LC (1)LA−LAC (1− s0)L−LA−LC+LAC (7)

WC,C = (1− s0)L−LC (1 + s0)
LC (8)

Here, LAC is the expected number of genes containing both BOXA and BOXC , which is estimated
to be LAC = (LA · LC)/L.

The above model considers changes in trans- and cis-regulatory element frequencies according
only to natural selection acting upon phenotypes existing in the initial population. However,
the process of regulatory element evolution also involves mutations, including gains and losses of
regulatory elements as well as transitions between different binding sequences. Thus, we must
incorporate such processes into the model.

For the mutational process, we consider a birth-death-transition model, where sequence elements
can be gained, lost, or converted to the alternate binding sequence (i.e., BOXA→BOXC or vice
versa). The mutation process, then, alters the frequencies of the haplotypes within the population
individually for each gene. Thus, if y0, yA, yC , yAC represent the frequencies of the haplotypes in a
given generation, the mutation process creates new population frequencies y′0, y

′
A, y

′
C , y

′
AC according

to mutation rate parameters and the previous haplotype frequencies.
The mutation process is defined by three parameters, the birth parameter (θα), the death

parameter (θβ), and the conversion parameter (θT ). The birth parameter θα represents the rate (per
generation) at which a new binding site appears in a previously empty promoter, while the death
parameter θβ represents the rate (per generation) at which a promoter with an existing binding
site looses its binding site and becomes empty. The conversion parameter θT represents the rate
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at which a BOXA binding site converts to a BOXC binding site, or vice versa. For consistency, we
assume that these parameters are identical for BOXA and BOXC sequence elements.

We define our parameters θα and θβ according to the birth/death parameters α and β estimated
in our birth-death model. We recall that α represents the probability that a binding site appears
at a given unoccupied nucleotide site in one year, and that β represents the probability that an
existing binding site is lost in one year. If the number of years between generations is R and the
width of the binding site target region is D, then approximate the birth and death parameters to
be θα = RDα and θβ = Rβ. Choosing a value for the conversion parameter θT is more arbitrary,
so we conducted several simulation analyses assuming different values for this parameter.

Determining the population frequencies following this mutation process is straightforward.
Given the initial haplotype frequency vector [y0, yA, yC , yAC ]T , we can determine the haplotype
frequency vector [y′0, y

′
A, y

′
C , y

′
AC ]T following the mutation process through matrix algebra:

1− 2θα θβ θβ 0
θα 1− θβ − θT − θα θT θβ
θα θT 1− θβ − θT − θα θβ
0 θα θα 1− 2θβ



y0
yA
yC
yAC

 =


y′0
y′A
y′C
y′AC

 (9)
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