
1 Introduction

We consider the case where a transcription factor protein SP has two variants, SPA and SPC .
Protein SPA originally represents the wild-type allele, while mutant protein SPC first arises in a
single individual at generation t = 0. These two transcription factors recognize different binding
sequences, denoted as BOXA and BOXC , respectively. We assume some adaptive benefit for the
mutant protein SPC to bind BOXC , and our goal is to determine the course of events by which
the frequency of allele SPC within the population changes over the course of evolution. We set the
frequency of the wild-type SPA phenotype at time t to be pt and the mutant SPC to be qt.

2 Relative fitness of individuals

We model only sequences for which binding of the SP protein is beneficial. For the wild-type
variant SPA, a promoter containing BOXA has the relative fitness 1. The binding of mutant SPC

to BOXC has an adaptive advantage, so that promoters containing BOXC in the presence of SPC

have a relative fitness 1 + sC (where sC > 0). Since we consider only genes for which SP protein
binding is beneficial, promoters without BOXA in the presence of SPA and without BOXC in the
presence of SPC have a lower relative fitness, given by 1− s0 in both cases (s0 > 1). We allow both
BOXA and BOXC to be present in the same promoter, each with potentially multiple instances
in the same gene. Moreover, the number of each binding element within a single gene may vary
within the population, as does the SP protein phenotype.

Let H represent the SP protein phenotype, which in haploids can be either A or C, depending
on whether SPA or SPC is present in an individual. In diploids, H has three possible values, AA,
AC, or CC. Within an individual, we can set LA be the number of genes containing at least one
copy of BOXA, and we set LC be the number of genes containing at least one copy of BOXC . The
total number of genes is denoted as L. For haploids, we denote the total fitness FH be the fitness
of that individual with SP protein phenotype H. For an individual carrying SPA, the total fitness
is

FA = (1)LA(1− s0)L−LA (1)

while the fitness of an individual carrying SPC is

FC = (1 + sC)LC (1− s0)L−LC (2)

The diploid case is more complex, because both the SP protein allele as well as the number
of binding sites BOXA and BOXC in each gene can be heterozygous. We assume here that the
existence of BOXA and/or BOXC in a promoter is a dominant trait, such that heterozygosity
produces a fitness identical to that of a homozygous individual carrying a particular binding site.
In this framework, we let LA and LC be the number of genes containing BOXA or BOXC in at
least one of the chromosome copies.

Fitnesses for homozygous SP alleles AA and CC are similar to those of haploids, and are given
by

FAA = (1)LA(1− s0)L−LA (3)

FCC = (1 + sC)LC (1− s0)L−LC (4)

In addition, in cases where the phenotype for the SP proteins are heterozygous, we consider binding
of SPC to be dominant to the binding of SPA. Thus, we see a corresponding increase of fitness upon
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binding of SPC to BOXC , regardless of whether BOXA is present or not. In the hetereozygous SP
phenotype AC, we need to define an extra value LAC , which represents the number of promoters
in which both BOXA and BOXC are present. Under the simplifying assumption that BOXA and
BOXC elements occur independently, we can estimate LAC to be LAC = LALC/L. The total fitness
of these individuals are

FAC = (1 + sC)LC (1)LA−LAC (1− s0)L−LA−LC+LAC (5)

3 SP protein phenotypes within the population

The fitness of an individual, given by both the SP protein phenotype and the existence of binding
sites in each promoter, stochastically determines the probability of passing along the total pheno-
type to the next generation. We remember that, in generation t, the frequency of the SPA allele is
given by pt, while the frequency of allele SPC is qt. Note that pt + qt = 1 for all t.

First, let us consider the haploid case. Given frequencies pt and qt at generation t, we can
determine the frequencies pt+1 and qt+1 in the next generation according to the relative fitnesses F
for each phenotype. However, we must remember that individuals within the population may carry
varying binding site phenotypes. We let pt(LA) represent the fraction of the population carrying
allele SPA and LA promoters containing BOXA elements, so that

∑
k pt(k) = pt. Similarly, we

let qt(LC) be the fraction of the population carrying the SPC allele and LC promoters containing
BOXC elements. Then,

pt+1(LA) =
pt(LA)FA(LA)∑

k pt(k)FA(k) +
∑

k qt(k)FC(k)
(6)

where F (k) represents the relative fitness given k promoters containing the corresponding binding
site elements.

For diploids, we introduce heterozygosity for both SP protein phenotypes as well as the number
of binding elements. For each generation t, we have frequencies pt and qt, which represent the
frequencies of alleles SPA and SPC , respectively. If we let g

Here, we will denote values involving p and q to be similar as for the haploid case, assuming
homozygous alleles AA and CC for the SP protein, respectively. We also introduce values r, which
represent frequencies for heterozygous individuals carrying both SPA and SPC . Given this notation,
we see that

pt+1(LA) =
pt(LA)2FAA(LA) + pt(LA)

∑
k qt(k)FAC(LA, k)

P +Q+R
(7)

qt+1(LC) =
qt(LC)2FCC(LC) + qt(LC)

∑
k pt(k)FAC(k, LC)

P +Q+R
(8)
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where

P =
∑
k

pt(k)2FAA(k) (9)

Q =
∑
k

qt(k)2FCC(k) (10)

R = 2
∑
k,m

pt(k)qt(m)FAC(k,m) (11)

where FAC(LA, LC , LAC) represents the relative fitness of an individual heterozygous for the SP
protein with LA promoters containing BOXA, LC promoters containing BOXC , and LAC promoters
containing both. Total frequencies of each SP protein phenotype can be obtained through the
summation of p(k), q(k), and r(kA, kC , kAC) across all values of k = 0, 1, 2, ..., L (or kA, kC , and
kAC for heterozygous SP protein individuals), i.e., all possible numbers of promoters containing the
corresponding binding sites.

4 Cis-regulatory mutations

So far, we have considered cases without any gains, losses, or conversions between binding elements
BOXA and BOXC . However, mutations clearly arise over the course of evolution, and thus must
be incorporated into the model.

Considering the diploid case, we remember that LA and LC represent the number of genes with
BOXA/BOXC on at least one chromosome within a single individual. Assuming Hardy-Weinberg
equilibrium and linkage equilibrium, we can then calculate the overall frequency (bA and bC) of
promoters with BOXA/BOXC . That is,

LA/L = b2A + 2bA(1− bA) (12)

LC/L = b2C + 2bC(1− bC) (13)

where L is the total number of genes. This gives bA = 1−
√

1− LA/L and bC = 1−
√

1− LC/L.
The total number of promoters L′A containing BOXA (2 per gene in a diploid) is then L′A = 2bAL,
and similarly for BOXC .

Allowing for mutations stochastically changes these allele frequencies at some probability during
each generation. In some cases, binding sites can be gained de novo or lost completely. In other
cases, we may observe binding site conversions between the two binding elements, where BOXA

converts to BOXC , or vice versa. Let us suppose that the probability of gaining a copy of BOXA

or BOXC de novo in the promoter of a single individual is µA and µC , respectively. Then, the
number of BOXA binding sites gained in an individual in one generation (UA) follows the binomial
distribution, with probability of success µA and number of trials 2L(1 − bA). Similar rules follow
for BOXC .

In addition to the birth of new binding sites, binding sites can also be lost over the course of
evolution. We let νA and νC represent the probability that a promoter with BOXA or BOXC looses
that binding site in one generation. The number of deaths (V ) then is also given by the binomial
distribution with probability ν and number of trials 2Lb.

Binding site conversions, where BOXA→BOXC or BOXC→BOXA, can also be modeled. For
simplicity, we assume that the frequency of conversion is the same in either direction, and occur at
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probability κ per promoter in any individual per generation. If we first consider the case for which
BOXA is present and BOXC is absent from the same promoter, the number of BOXA→BOXC

conversions (K) should also be given by the binomial distribution, with probability κ and number
of trials 2LbA(1 − bC). The opposite BOXC→BOXA conversion should also follow the binomial
distribution, with probability κ and number of trials 2LbC(1− bA).

We can estimate the values for µ, ν, and κ empirically. Under neutral processes, the rate of
mutation per individual locus is equal to the fixation rate within the population. Thus, a reasonable
estimation for µ and ν can be determined according to the observed birth and death rates in the
mammal phylogeny. More specifically, we can consider birth and death rates for (the neutrally
evolving) BOXC sites in lineages known to prefer BOXA and vice versa.
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