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ABSTRACT 
Statistical properties of the symmetric  stepwise-mutation model for microsatellite  evolution are studied 

under the assumption that the number of repeats is  strictly bounded above and below. An exact  analytic 
expression is found for the expected products of the frequencies of alleles separated by k repeats.  This 
permits characterization of the asymptotic  behavior of our distances Dl and ( 6 ~ ) '  under range con- 
straints. Based on this characterization we develop transformations that partially restore linearity when 
allele size  is restricted. We  show that the appropriate transformation cannot be applied in the case  of 
varying mutation rates (0) and range constraints ( R )  because of statistical  difficulties.  In the special 
case of no variation in p and R across  loci,  however, the transformation simplifies  to a usable form and 
results in a distance much more linear with  time than distances  developed for an infinite range. Although 
analytically incorrect in the case  of variation in p and R, the simpler transformation is surprisingly 
insensitive  to  variation  in  these parameters, suggesting that it may  have considerable utility in phyloge- 
netic studies. 

M ICROSATELLITES are a special class  of tandemly 
repeated DNA in which a specific  motif  of 2-6 

bp is repeated up to -100  times (TAUTZ  1993). Micro- 
satellite loci with > -10 repetitions of the basic  motif 
are highly variable in taxa ranging from plants to verte- 
brates (LAGERCRANTZ et al. 1993).  It is common to ob- 
serve heterozygosities of 0.8 and as many as 20 or more 
alleles at a locus (BOWCOCK et al. 1994; MACHUGH et al. 
1994; DEKA et al. 1995; GOLDSTEIN and  CLARK 1995). 
Microsatellites are also  very  easily scored using PCR- 
based methods and tend  to  be reliably  variable in all 
populations of a given species. Another  important ad- 
vantage is that microsatellite analyses provide informa- 
tion about  the state of  specific loci, facilitating a num- 
ber of population-genetic inferences. 

For these reasons, microsatellites are rapidly replac- 
ing allozymes and newer markers (e.g., randomly ampli- 
fied polymorphic DNAs) in studies attempting  to esti- 
mate  demographic and evolutionary parameters of 
natural  populations (MACHUGH et al. 1994; ESTOUP et 
al. 1995; GOLDSTEIN et al. 1995c; SLATKIN 1995a,b). 
They are also beginning  to  be used to estimate phyloge- 
netic relationships among  populations and closely re- 
lated species (BOWCOCK et al. 1994; MACHUGH et al. 
1994; DEKA et al. 1995; ESTOUP et al. 1995; GOLDSTEIN 
et al. 1995a,b; PEPIN et al. 1995),  but success here has 
been limited both by the availability  of  variable  micro- 
satellites in multiple species, and by uncertainty as to 
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which genetic distance measure is most appropriate  for 
microsatellites ( GOLDSTEIN et al. 1995a). 

The variability  of microsatellite loci is due to their 
exceptionally high  mutation  rate, which seems to aver- 
age -0.0001  (WEBER and WONG 1993). This high muta- 
tion rate also guarantees  that isolated populations di- 
verge rapidly, but  an exact description of this process 
of divergence is elusive since it depends  on  the precise 
details of the  mutation process. Direct studies of micro- 
satellite mutation mechanisms, based both on artificial 
constructs in yeast (HENDERSON and PETES 1992) and 
analyses  of human pedigrees (WEBER and WONG 1993) 
have  shown that most mutations involve the  addition 
or subtraction of a small number of repeat units. This 
contradicts the assumptions of  the infinite alleles muta- 
tion model, in which  all  new mutations are  to alleles 
not previously represented in the  population. To ac- 
count for this aspect of the  mutation process, a number 
of authors have recently studied  the stepwise mutation 
model, which was first developed to describe the evolu- 
tion of the  charge state of proteins as inferred from 
electrophoretic mobility (OHTA and KIMURA 1973). 

Using different  methods, GOLDSTEIN et al. (1995a) 
and SLATKIN (1995a) both  demonstrated  that  an unbi- 
ased estimator of separation time can  be  obtained by 
taking the  squared differences of  all pairs of  alleles 
drawn one from each of the two populations. Subse- 
quently, GOLDSTEIN et al. (199513) showed that a related 
distance, given by the  squared difference between the 
means of the two populations, is also linearly related to 
time. This distance, called (Sp)*, has the  further advan- 
tage of being  independent of population size when p o p  
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ulations are internally at mutation-drift equilibrium. Al- 
though analytically unbiased, sampling effects may 
inflate (Sp)' in practice unless sample sizes are relatively 
large. The linear relationship with  time  of these step- 
wise distances is in contrast to traditional distances (e.g., 
Fs7., Nei's distances), which are well  known to possess 
an asymptote under stepwise mutations (NEI and CHAK- 
RABORTY 1973; CHAKRABORTY and NEI 1977; NEI 1987). 

The analytic descriptions in GOLDSTEIN et al. (1995a) 
and SLATKIN (1995a), however,  were  highly idealized. 
Most importantly, both assumed that microsatellite al- 
leles can have an arbitrarily large number of repeats. 
Noting that allelic  sizes are in fact tightly constrained, 
GOLDSTEIN et al. (1995a) emphasized that  their distance 
would  also asymptote when applied in practice. While 
lacking a formal model including range constraints, 
GOLDSTEIN et al. (1995a) presented  a heuristic argu- 
ment suggesting that  the value  of their stepwise distance 
at maximal divergence is about (R' - 1)/6, where R is 
the  number of  alleles  possible. They also provided a 
very rough estimate of the  duration of linearity by calcu- 
lating how long  it would  take to reach this value  in the 
unconstrained model. 

The exact value  of this asymptote and  the exact de- 
tails of the  approach of the distance to its maximal 
value are of critical importance to the evaluation of 
stepwise distances. For the  unconstrained model, both 
SLATKIN (1995a) and GOLDSTEIN et al. (1995a) demon- 
strated  that nonstepwise distances are  more accurate for 
closely related taxa, but  that stepwise distances become 
superior beyond some critical level of divergence. Intu- 
itively, the stepwise distances become superior after the 
nonstepwise distances have  lost linearity and  no  longer 
accurately reflect separation times.  With range con- 
straints, however,  stepwise distances also asymptote and 
should work better only  within a certain window  of  sepa- 
ration times. The lower boundary of  this  window  is  re- 
lated to the time at which nonstepwise distances asymp- 
tote, and the upper boundary is related to the time at 
which the stepwise distance reaches its asymptote of 
(R2 - 1)/6. It is also important  to appreciate that this 
window in which  stepwise distances are  superior will 
only  exist if R is sufficiently large. GOLDSTEIN et al. 
(1995b) used polymorphisms in three primate species 
to investigate experimentally whether  the level  of  diver- 
gence among closely related primates falls  within  this 
window. They showed that (tip)' allows the  three possi- 
ble rooted trees relating humans, chimps and gorillas 
to be distinguished, while Nei's distances, for example, 
do not. 

For a  more rigorous assessment of the reliability of 
different distances under range constraints, and to de- 
velop  statistical corrections to recover linearity, it is nec- 
essary to have an analytic description of the dynamics 
of genetic distances under range constraints. Here we 
introduce  an analytic framework that allows an exact 
description of the  expected dynamics of loci undergo- 

ing stepwise mutations on a restricted set of R alleles. 
GARZA et al. (1995) recently proposed  a model of micro- 
satellite evolution that  incorporates bias in the muta- 
tion process in the form of a "restoring force" such that 
small  alleles tend to mutate upward and large alleles 
downward. In  the  present study, we incorporate explicit 
range constraints for  the following reasons. First,  maxi- 
mal and minimal allele size  would seem much easier 
to estimate than  a  parameter governing the  degree of 
asymmetry in the mutation. This difference becomes 
especially important in connection with attempts to im- 
prove genetic distances by applying corrections based 
on parameters that must be estimated. A second motiva- 
tion is that  an explicit upper ceiling seems to be a closer 
representation of the known behavior of certain micro- 
satellites (e.g., trinucleotides) in  which the  mutation 
process is more symmetric and the rate moderate  for 
small alleles, while for larger ones  the rate is extremely 
high and biased upward. If  we assume that  the large 
alleles are severely disadvantageous, a fixed range be- 
comes an  appropriate  representation. For simplicity, we 
consider only the strict stepwise mutation model. 

Dealing with an infinite number of allele sizes,  previ- 
ous models (OHTA and KIMURA 1973; MORAN 1975) 
have described the evolution of the expected products 
of allele frequencies separated by k units, given by ck 
= Ej v,vi+k, where v, and v i + k  are  the frequencies of 
alleles  with i and i + k repeats. In  the case of finite R, 
however, it is straightforward to show that  a closed form 
recursion for  the ck cannot be obtained  independent 
of the underlying allele frequencies. Studying variation 
within a single population NAUTA and WEISSING (1996) 
approximated  the frequencies of boundary terms in 
each of the C,. Here we instead describe directly the 
evolution of the matrix of expected products of allele 
frequencies. The traditional C k  can be obtained from 
such a matrix by summing diagonal rows. This analysis 
confirms the numerical results obtained by NAUTA and 
WEISSING (1996) and allows us to obtain analytic expres- 
sions for the expectations of measures of variation 
within a  population. More relevant to our purposes 
here, we also introduce  the  interpopulational sum 
Cf ,  which is the sum of products of allele frequencies 
drawn one each from two isolated populations. We 
show  how  this is related to our distances (tip)' and 
ASD, a distance we introduced earlier (GOLDSTEIN et 
al. 1995a),  that is the average of the  squared differences 
of alleles  drawn one each from two isolated popu- 
lations. To describe the evolution of the Cf, we derive 
recursions for  the matrix of products of allele frequen- 
cies,  drawn one from each of  two isolated populations. 

We use this approach to show  formally that  the ex- 
pected value of ASD between two maximally diverged 
populations converges to (R2 - 1)/6, as first suggested 
by GOLDSTEIN et al. (1995a). Similarly, E(6p)' converges 
to ( R 2  - 1)/6 - E(Do) ,  where Do is the average squared 
difference between pairs of  alleles both drawn from  a 
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single population (GOLDSTEIN et al. 1995a).  In practice, 
Do may be calculated as  twice the within-population vari- 
ance in repeat sizes. We also  show that  the  rate of con- 
vergence to this maximum is given by (1 - 2P + 2P 
cos 7r/R)‘, where /? is the stepwise per locus mutation 
rate. On the basis  of these results, we outline  the form 
that any correction must take to provide a statistically 
unbiased estimate of separation times. As we shall see, 
the  required form ensures  that such corrections will 
not be applicable in the  general case in which P and R 
vary across loci. Nevertheless, in the special case of sets 
of loci with the same P and R, a simple analytic correc- 
tion can lead to less  biased estimation of separation 
times without the statistical complications that arise in 
the  general case. We use computer simulations to assess 
the reliability of the  correction in this special case and 
compare  the  performance of the new estimator to ex- 
isting estimators like (Sp)‘. We also test the sensitivity 
of the simplified distance to variation in and R and 
find that it continues to behave well, despite being for- 
mally inappropriate in this case. 

METHODS AND RESULTS 

The following  analysis is based on that of MOW 
(1975) who derived a  number of important results for 
the stepwise mutation  model in which there is no con- 
straint on  the  number of repeats occurring at a locus. 
Here we specify a  range R of repeat scores, and for 
convenience these are  represented as 1,2,  . . . , R. Thus, 
R is the possible number of  alleles.  Symmetric one-step 
mutation is postulated so that for any allele i the rate 
of mutation  to each of i - 1 and i + 1 is P.  At  time t 
the  number of (haploid) genes carrying i repeats is 
ni( t )  with Ci ni( t )  = N, the  population size.  After muta- 
tion,  the  population frequency of allele i is 

with 

?r l ( t )  = (1 - 

Multinomial sampling then takes place to  produce  the 
next  generation of  alleles. Writing E,, as the expecta- 
tion operator in generation t given the  frequencies at 
time t - 1, we have for i = 1, 2, . . . , R, 

Et-l[ni(t)nj(t)l  

= N(N- l)7rZ(t - 1)7rl(t - l) ,  i f j (2a) 

Et-l[n7(t)] = N(N- l ) ~ : ( t  - 1) + Nr,(t - 1). (2b) 

In  our earlier studies of microsatellite evolution, two 
functions were used to study the evolution of allele 
frequencies within and between populations. These 
were Do, the average squared difference in repeat num- 
bers for two alleles  drawn from the same population, 
and Dl, the same average when the alleles are drawn 
one each from different populations. (Note: We have 
used the average square distance symbols ASD and Dl 
interchangeably in our earlier papers. Here we shall 
use Dl for brevity.) The time-dependent behavior of 
these functions when there is no restriction on  the 
range of repeat  numbers can be studied directly 
(GOLDSTEIN et al. 1995a). In particular, the difference 
Dl - Do, denoted (Sp)‘, provides a useful distance that 
is linear in the time since the separation of the two 
populations and removes the effect of population size 
(GOLDSTEIN et al. 199513; ZHIVOTOVSKY and FELDMAN 
1995). 

In  the absence of range restriction, MORAN (1975) 
analyzed the model in terms of the moments of the 
quantities 

where we  may write 

Do = 2 i2Cj .  (4) 
2 

A similar sum of products with the alleles chosen from 
each of two populations gives  rise to Dl: 

Dl = 2 i‘CT (5) 

with 

C $ ( t )  = Clk(t )  

and the superscripts to refer to the two populations ( a )  
and ( b ) .  

The quantities C, and CT appear to be more difficult 
to analyze directly in the case  of restricted range and 
we have chosen an  approach  that uses each of the sum- 
mands in ( 3 )  and (6). 

Analysis: Denote by B the R X R matrix with  ele- 
ments Bll = Bm = 1 - P; BIj = 1 - 2P for i + 1, R; 

= B1-,,, = P.  This tridiagonal matrix represents 
the one-step mutation process with forward and back- 
ward rates each p. Denote by v, the (row) vector of R 
allele frequencies n1 ( t )  / N, n, ( t )  / N. * nR( t )  / N  at time 
t .  Then we  may rewrite the relations (Equation  2) using 
the symmetry  of B as 

&I (v?vt) 

= (1 - $) B v : ? ~ Y ~ - ~ B  + - l R  Ai(Bvzl)e,, (7) 
N i=l 
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where A, is the R X R matrix with 1 in the (i, i )  position 
and 0 elsewhere, ei is the 1 X Rvector with 1 in position 
i and 0 elsewhere, and  the superscript T represents  the 
transpose. Relation 7 reports  the expectation after a 
generation of multinomial sampling conditioned on 
generation t - 1. Upon iteration we obtain  the expecta- 
tion given the initial frequencies 

+ 1 - - B~VOT~OB'. (8) i k)  
It is clear that BfvTconverges to  the uniform probabil- 

ity vector (l/R,  1/R, . . . , l /R)T. The rate of  conver- 
gence is the second largest eigenvalue of  B,  namely 

(BARNETT 1990, p. 350; the largest is obviously X. = 1). 
This enables us to write 

= I [ I -  (1 -k)B'] = Z ,  (11) 
- 1  

RN 

say, where I is the identity matrix. 
The entries of the matrix Z give  us the equilibrium 

expectations of products of frequencies (nJN) (nj/N) 
(i, j = 1,2 ,  . . . , R). Equilibrium values  of C, (as defined 
in Equation 3 above) are  obtained by summing the 
appropriate diagonal entries of Z. In principle, we may 
then  compute Do as in (4). 

First, let us examine the series in (10). The entries 
of the powers B'J are polynomials in @. Only the diago- 
nal and  the first super- and subdiagonals have linear 
terms in @. The (1, 1) and ( R ,  R) elements of B'J are 
(1 - Zpj), while the (i, i) elements ( i  f 1, R)  are 1 - 
4@j, neglecting terms O ( @ * ) .  Upon  summation, how- 
ever, these terms in @' actually turn  out  to be O(@N)'. 
If @N < 1, then  to  order (PN)', 

C,, = 1 - 4@(N-  1)(1 - i). (13) 

In  the same way,  we  may compute Cl = C 1 ,  

= 2@(N - 1)(  1 - ;) , 

where again terms O(@N)' are neglected. To this order 
of accuracy, we  may write 

&(Do) = EO(C1) + &(C-l) (15) 

= 4@(N-   1) (1  - ;) . 

Remark: As R -+ UJ in (15) we obtain the result of 
GOLDSTEIN et al. (1995) derived from MOW (1975). 
Note also that for large N and NP small, C, in (13) 
approximates (1 + 8Nfl)"", the result obtained by 
KIMURA and OHTA (1973) and MORAN (1975). It is  im- 
portant  to stress that  the  approximation  made by ne- 
glecting (NP)' and higher powers may not be  good, 
especially when R is small. It  appears  that in computing 
Do, terms of the form ( P N ) k  vanish, leaving  only terms 
of the form ck(PWk/R, where ck are constants. For PN 
large and R small, these may be important. As an exam- 
ple, retaining  the terms in (PN)' and (PN)' gives the 
extension of (14): 

&(Do) = 4P(N - 1) 1 - - - - (4N' - 7 N  + 3) ( ;) 4: 

+ P 3 ( N  - 1)'(2N - 1)  + O(@W4. (16) 

We conjecture  that all higher powers of ( P N )  will also 
occur only  with a divisor  of R. Since (NP) is  typically 
quite large (GOLDSTEIN and CLARK 1995; GOLDSTEIN et 
al. 1995b), it will usually be necessary to  determine &Do 
by numerical evaluation of the matrix Z in (1  1).  

To study the problem of differentiation between p o p  
ulations, suppose that a population has reached  the 
equilibrium defined by ( lo) ,  that two populations are 
formed from this progenitor  population and that ini- 
tially each has the same statistical configuration as the 
ancestral group. Subsequently, the evolution of the two 
groups, labeled a and b, occurs independently. Write 
.vL and bvt for  the (row) vectors  of  allelic frequencies 
in the two groups. Then, as before, we have 

16 

E,-l(,vF) = B,v;cI, ~5-~(p;) = Bbv;II, 

and, after sampling in the two populations, 

&-1[,v:' P J  = BRLI  Y-IB, 

so that and,  on summation, we have 
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&[avT bvtl = B'HavOT POIB'. (17) 

Here, E[,V: p o l  represents  the state of the initial popu- 
lation given by Z in ( 1 1 ) .  Hence 

Now each summand B2(t+J' converges to  the matrix B 
= llBoil with Bii = 1 / R  at  the  rate (1 - 2 p  + 2 p  cos r/ 
R)', which is the  leading nonunit eigenvalue of B2. We 
conclude  that  for  each  entry of the matrix on the left 
of ( W ,  

lim { & [ y T  b ~ t ] } y  = l/@, i ,  j = 1, 2 .  - * R. (19) 

We  may  now compute  the equilibrium value  of 

Po 

&(Dl ), 
R 

&(Dl) = 2 c E&(CT) 
i= 1 

R R-i 

= 2 2 1/R2 
i = l  j=1  

R 

= 2 E(R - i ) / R 2  
i= 1 

= (R2 - 1 ) / 6 .   ( 2 0 )  

This is the value postulated originally by GOLDSTEIN et 
al. (1995a) and used by NAUTA and WEISSING (1996); 
it can be  obtained directly by noting  that  the allele 
frequencies within a population  approach a uniform 
distribution. 

In  populations a and b, denote  the average repeat 
scores at time t by ra( t )  = C i,v: and rb(t)  = C. ipi. 
GOLDSTEIN et al. (1995b) defined  the distance between 
populations aand bby (Spt)' = ( ra( t )  - rb( t ) )2  at time 
t .  It is  easy to see (GOLDSTEIN et al. 1995b) 

E t - l ( S ~ t ) ~  = Et-1 (Q(O) - Va(t) - V,(t), 

where V J t )  and &(t)  are  the variances in populations 
a and b at time t, and therefore & ( S P , ) ~  approaches 
the limit 

ii(Sp)2 = 
(R2 - 1) 

6 - EODO 

as t +  m. For PNsmall, E& may be estimated as in  (15); 
otherwise, it must be calculated numerically. Recall that 
without restriction on the  range of repeat scores, 
&(Sp,)' grew as 4p7, where r is the time since popula- 
tions a and b split from a common ancestral population. 
Under  the assumption that  the ancestral population 
had  reached equilibrium (Le.,  &(Do) was at its equilib- 
rium value), then &(bp)' changes at  the same rate as 
&(Dl), namely (1 - 20 + 2 p  cos T / R ) ~ .  When t is 
small and R is large,  therefore, ( 6 ~ ) ~  will grow approxi- 
mately as in the  unconstrained case. 

Statistical issues: We showed  above that  the  rate of 
convergence of E(Dl )  and E ( S P ) ~  are governed by the 
second largest eigenvalue of the matrix B2, namely (1 
- 2p  + 2p  cos 17/R)2. Here we focus on ( S P ) ~ ,  since 
that seems to  be  the  preferred distance, and write 

E(Sp)T(t)  

= M(Ri) [l - (1 - 2p ,  + 2pi COS T / R ~ ) ' ~ ] ,  (23)  

where the subscript i represents a mutation  rate and a 
range specific to locus i ,  and M(R,,) is the maximum 
value of the distance. For p small, this equation can be 
approximated as 

E(Sp)T(t)  

= M(Ri){ l  - exp[-(4Pi - 4pi cos r / R i ) t ] } .  (24 )  

The asymptotic behavior of the stepwise distance guar- 
antees  that  after sufficient time has passed, it will pro- 
vide a biased estimate of separation times. In such cases, 
it is sometimes useful to find a correction  that results 
in a linear distance, although this often entails too high 
a price in terms of the variance of the distance 
( GOLDSTEIN and POLLOCK 1994). To obtain a distance 
whose expectation is linear with time in the general 
case where R and p vary across loci, it is necessary to 
take the  product of the differences between the ob- 
served and maximal distances across  loci. For conve- 
nience we  will represent each of these differences as a 
fraction, P,, of maximal distance. That is, P, = (M(R . )  
- E(D1,i))/M(&.).  To obtain afunction linearwith time 
using all  of the loci, we take the  product across  loci  of 
the P,: 

= n exp[-(4pi - 4pi cos x / R , ) t ] .  (26)  

Taking the logarithm of the  products of the Pi results 
in a distance that is linear with time. 

1 

log n Pi = -x (4pi - 4pi COS r / R i ) t  (27 )  

= Clt, (28)  

say, where C, = -Xi (4pi - 4pi cos r/R,) is a constant 
given by the sets of pi and R,. When mutation rates 
and range constraints are known,  time can be obtained 
directly using the reciprocal of Cl . When the  mutation 
rates are  not known, a linear  function can be obtained 
as long as the R, are known so that Pi can be  obtained. 
Since Cl is negative, the distance in this  case  would be 
obtained as -log [n, Pi]. 

It is tempting  to suggest -log [ni Pi] as a genetic 
distance for microsatellites with range constraints, since 
its expectation is linear with time. Unfortunately, 
though (analytically) unbiased,  the statistical properties 
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of this distance are highly undesirable. The basic prob- 
lem is that Pi must be calculated for each locus sepa- 
rately. Since stepwise distances have a high variance 
(GOLDSTEIN et al. 1995a; ZHIVOTOVSKY and FELDMAN 
1995), many  of the Pi will be negative,  even when the 
expectation of (Sp)' is  well below M(R, ) .  When one  or 
more of the Pi is negative, the  argument of the loga- 
rithm is negative and  the distance cannot  be calculated. 
Consequently, all  loci for which Pi < 0 must be  either 
discarded from the analysis or set  to  an arbitrary value. 

We used computer simulations (described below) to 
evaluate the behavior of -log [ni Pi] as a distance. As 
might be expected, discarding atypically large values 
results in a substantial bias, causing -log [ni Pi] to 
asymptote even earlier  than (Sp)' (data  not  shown).  It 
is conceivable that some method  that truncates large 
distances at  an arbitrary value  would  work better,  but we 
are not optimistic that  the behavior can be substantially 
improved. 

For completeness it  should  be  noted  that even in the 
unlikely  case that M(R,.) is sufficiently greater  than  the 
expected distance to  ensure  that  no  domain  errors oc- 
cur,  the distance still  would not be likely to perform 
well. Since the Pi vary stochastically, and  the  function 
required  to restore linearity is highly nonlinear,  the 
correction has a substantial bias. To  determine how 
the linearized distance -log [ni Pi] is influenced by 
variation in the Pi let g(Pl, P2, . . . , PL) = log [ni Pi]. 
Then, the expectation of g(Pl, P2, . . . , P2) can  be esti- 
mated using the  delta  method (see for example RICE 
1995, p. 149): 

E[g(Pl, P2, * * f 3 PL)1 = g[W1), W'), . . ., W L ) I  

1 d2 

2 ,  d e  
+-x.Var (Pi) - - - g [ ~ W 1 ) , W ' 2 ) ,  . . . , W L ) I .  (29) 

[To obtain (29), covariances  have been neglected. 
ZHIVOTOVSKY and FELDMAN (1996) showed that these 
covariances are  indeed negligible when the recombi- 
nation between all pairs of genes is large relative to 
1/N. Our simulations indicate that these covariances 
are  much less than  the variances of Pi.] Because 
d'g/de = -1/[E(Pi)]' is negative, the expectation of 
the linearized distance is  always a smaller negative num- 
ber  than g [ E ( P l ) ,  E(P2) ,  . . . , E(PL)]. That is, the dis- 
tance has the form - ( Clt - k )  and this is larger than 
it should be (recall Cl is negative). Furthermore,  the 
magnitude of the  error is proportional  to  the variance 
of P,, which is known to  be very large (ZHIVOTOVSKY 
and FELDMAN 1995). Although this bias might be cor- 
rectable, statistically it seems hardly worthwhile to make 
the effort. 

In summary, there  are two difficulties in employing 
this correction to recover linearity. (1) Some of the Pi 
will be negative, causing a log domain error  that  cannot 
be eliminated without introducing a substantial bias, 
and (2) taking products results in very biased estimates 

even when a domain error does not  occur,  the bias 
being proportional  to  the variance of the distance at a 
single locus. We are  not optimistic about  the prospect of 
overcoming these problems with  any  analytic estimator. 

A solution to these problems is straightforward, how- 
ever, in the special case in which Pi = p and R, = Rfor 
all i: that is, mutation rates and range constraints do 
not vary across loci. In this case we  may  work  with the 
arithmetic average of the distances across  loci as follows. 

Ex (6CL)T 

=EM(R)(l-exp[-(4P-4Pcos7r/R)t]) (30) 

= LM(R)(l -exp[-(4P--4Pcos7r/R)t]), (31) 

where L is the  number of  loci. Then a linear distance 
based on  an arithmetic average is obtained as, 

That is, the  proposed distance, DL, is constructed by 
summing (Sp)' across loci, dividing by L times the pre- 
dicted maximum (Equation 22) and, subtracting this 
from 1, taking logarithms and dividing by - C2. The 
improvement can readily be seen with a procedure simi- 
lar to  that used in (29). In this case, the  arithmetic 
averaging results in a bias that falls  with the  square of 
the  number of  loci.  After discounting for  the difference 
between Cl and C2 in (28) and (32), the bias  of the 
summed distance is 1/L times that of the  product dis- 
tance. More importantly, combining observed distances 
arithmetically greatly reduces the  chance of a log do- 
main error. Finally, since the variance of CDl,i as a pro- 
portion of LM decreases with the  number of loci, the 
probability of a domain error goes  down as the  number 
of  loci increases. This suggests that  for a sufficiently 
large number of loci, all with the same mutation rate 
and range constraint,  the log correction shown  above 
might have practical use. 

Computer evaluation: The properties of DL as a ge- 
netic distance were tested using computer simulations 
similar to those described in GOLDSTEIN et al. (1995a). 
A single population is brought to equilibrium under step 
wise mutation and drift and  an identical copy is then 
made. The  independent evolution of these two popula- 
tions is simulated, and  at set intervals of time, distances 
are calculated. Figure 1 shows the average  behaviors of 
DL and (Lip)' for simulations using 40 and 80 loci. In the 
case of 40 loci, DL is somewhat more linear than (Sp)' 
after -750 generations, but  the difference is slight. Al- 
though in expectation DL is linear with t for all t ,  in 
actuality  when the expectation of Z (Sp)? is sufficiently 
great there is a high probability that  the sum of the 
distances  across  loci will exceed the average  maximal 
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FIGURE 1.-Simulation  results  of  two populations  starting 
at  the same equilibrium  state. Each population has  100  indi- 
viduals with either 40 or 80 loci  each.  The  mutation  rate 
per  locus  per  generation was  0.01.  Results reported  here  are 
averages  over 500 replicates  with  different  initial  conditions. 
(Top) ( 6 ~ ) '  and  linearized  distance (DL) computed as aver- 
ages  over 40 loci (per individual),  all  having  the  same  range 
constraint ( R  = 20). (6p)' has  been  divided by 4p to make 
it  comparable  to DL. The x a x i s  is the  number of generations, 
and  the y axis  is the  estimated  time  calculated  from  the o b  
served  distance. [Upper curve DL, lower  curve (Sp)'.] (Bot- 
tom) Same as A but  with  the  averages  over 80 loci (per individ- 
ual) of (Sp)' and DL. 

divergence, LM, resulting in a log domain  error. As 
noted above, we expect that  for given t, the chance of 
satiswng  the inequality LM - Z(Sp)S < O (thus causing 
a log domain error) will decrease with the  number of 
loci, thereby extending  the time over  which DL will re- 
main linear with t .  The simulation with 80 loci confirms 
this expectation. In this  case DL is approximately linear 
until generation 10,000 or so. As would be expected, the 
linearity of (Sp)' is not affected by the  number of  loci; 
therefore DL, unlike (Sp)', has the interesting property 
that its  useful temporal range can be  extended by in- 
creasing the  number of  loci studied. 

To  compare  the overall reliability of the two dis- 
tances, we use the  mean  squared  error (MSE) . Suppose 
that  the values of either (Sp)' or DL are observations 
on  the following process: A (  t )  = t + b + E ,  where A ( t )  
is the  estimated time using either (tip)' or DL as the 
time estimator, t is the  true time of separation, b is a 
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FIGURE 2.-Mean square  errors. (A) The mean  square  er- 
ror (MSE) (see  text) of (Sp)' and DL as functions of  separa- 
tion  time  between  two  populations of individuals  with 40 loci 
each  (averaged  over  all 40 loci). [Upper curve (6p)', lower 
curve DL.] (B) Same as A but with  two populations of  individ- 
uals  with 80 loci  each  (averaged  over  all 80 loci). 

constant, or systematic, error, often called the bias, and 
E is the  random  component of the  error.  Here E is a 
random variable with E[€]  = 0 and Var ( E )  = a'. An 
overall measure of the size  of the  error is the MSE, 
which  is defined as 

MSE = E [ ( A ( t )  - t ) ' ] .  

MSE can be decomposed into contributions from the 
bias and  the variance as follows: 

MSE = b2 + a'. 

The values  of (Sp) ' and DL are  computed as the average 
over  all loci, either 40 or 80, and over all 500 replicates 
of the simulation. The values of MSE and a' are mea- 
sured over the 500 replicates. Figure 2A demonstrates 
that, due  to  the asymptotic behavior of (Sp)', its MSE 
very  quickly becomes substantially larger  than that of 
DL. Figure 2B shows that this difference increases with 
the  number of loci, as expected. 

Another way to assess the  expected  performance of 
these distances in phylogeny reconstruction uses the 
accuracy index  introduced by  TAJIMA and TAKEZAKI 
(1994). Very early in the evolution (Sp) ' has a higher 
accuracy, but  for  the majority  of times the accuracies 
of the two distances are nearly identical  (data not 
shown). For distantly related  groups we suspect that DI* 



214 M. W. Feldman et al. 

may perform  better, especially  with a large number of 
loci. Since the slope of (Sp)' is not sensitive to  the 
number of loci, and  the  point  at which the linearity of 
DL is lost increases with the  number of loci, it seems 
clear that for a sufficiently large number of loci and 
sufficiently large t ,  DI, will have a higher accuracy than 
(6~) ' .  These theoretical considerations suggest that DL 
has potential as a distance for microsatellite loci. The 
major difficulty in its implementation is finding a large 
number of microsatellite loci  with  sufficiently similar 
mutation rates and  range constraints. Fortunately, it 
would appear  that DL is not highly  sensitive to  moderate 
variation in p and R. 

To assess the sensitivity of DL to rate variation, we 
compared simulations with constant and variable 
ranges and mutation rates. We considered 30 loci  in 
which the  mutation rate was either fixed at 0.045 or 
chosen randomly from the interval 0.015-0.075 for  an 
average of 0.045.  Similarly, the range R was either fixed 
at 60 or chosen randomly from an interval of 20-100 
for  an average  of 60. Figure 3 presents the results from 
the simulation with constant R and p, while Figure 4 
show the simulations with  variable R and 0. The most 
striking aspect of these results is that even though the 
transformation is analytically incorrect when R and p 
vary, applying this transformation when either R or ,B 
vary over a factor of 5 (Figure 4) results in behavior 
almost identical to that when the transformation is ap- 
plied to a set of  loci  with fixed values that  are  the aver- 
ages of the varying  values (Figure 3). That is, under 
variation in either R or 0, DI. remains much  more  linear 
than (6p)' and in fact is nearly as linear as it is in the 
case  of no variation among loci. Furthermore,  the MSE 
of the transformed distances remains well below that of 
(by)' for  the bulk of the evolution, and is even generally 
below that of 0,. applied to the case of no variation 
(Figure 4B). These results suggest that DL, despite be- 
ing an inappropriate transformation analytically,  never- 
theless behaves very  well in the case of variation in p 
and R. 

Careful inspection of Figure 4B also  reveals that  the 
MSE of DL in the case of fivefold variation in R is some- 
what  lower than in the case  of  fivefold variation in /?. 
This suggests that DL is  less sensitive to variation in R 
than variation in P,  as might be predicted based on the 
expectation shown in (31). Notice that  the only place 
where variation in R will affect linearity is in the  term 
cos n / R  inside the exponential. This is the only  im- 
portant term because the  leading LM(R) averages, and 
the term against the  exponential will only contribute 
an additive term upon log transformation. Because  cos 
n / R  in the  exponential is asymptotic in R, as long as 
all  loci  have reasonably high values of R (say above 25 
or so), variation in R is expected to have a relatively 
small impact. Variation in p is expected to be more 
important because it is linear inside the  exponential 
term. Thus, in applying DL it would seem that clumping 
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FIGURE 3."Constant parameter  simulations.  Conditions 

are  the  same as above  except  that  the  mutation  rate is 0.045, R 
is 60, and the  population  size is 60. Top:  the  average  distances 
among 150 replications;  bottom:  the MSE for  each of the two 
distances. 

loci into sets  with similar mutation rates will be  more 
critical than clumping them on the basis  of R. 

DISCUSSION 

The tremendous variability of microsatellite  loci  has 
established them as the  preferred markers for most intra- 
specific applications. Their use  in interspecific phylog- 
eny reconstruction, however,  has been much less  success- 
ful. One reason for this  seems to be that  at least some 
microsatellites degrade quickly,  causing their mutation 
rates and  other parameters to differ  greatly from taxon 
to taxon (ELLEGREN et al. 1995;  RUBINSZTEIN et al. 1995; 
GOLDSTEIN et al. unpublished data). As a result,  distances 
at these loci do not  appear well correlated with  time for 
more divergent taxa. Another difficulty is that even  when 
microsatellites  persist  over  suf€iciently long intervals, they 
nevertheless  fail to reflect separation times among spe- 
cies due  to constraints on maximal  allele  size (GARZA et 
al. 1995; GOLDSTEIN et al. 1995a). Such constraints, which 
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FIGURE 4.-Variable  parameter simulations. Conditions are 

the same  as in Figure 3 except that either the mutation rate 
is randomly  drawn from the interval (0.015, 0.075) (average 
of 0.045 as used above) or the range  constraint  is  randomly 
drawn from the interval (20, 100) (average of 60 as for Figure 
3). (A) The average distances among 150 replications. The 
two upper curves  are the transformed distances (applied in 
the case of variable R or variable p )  and the two lower  curves 
are (SF)'. (B) The MSE for the linearized distance applied 
to all three cases (no variation,  variation in R, and variation 
in p). The MSE for (SF)' is the same for all cases, so only 
one curve  is shown. 

have been well established empirically (BECKMANN and 
WEBER 1992; BOWCOCK et al. 1994), mean that microsat- 
ellites will eventually lose their phylogenetic information 
(GOLDSTEIN et al. 1995a,b).  Here we have outlined an 
analytic method for characterizing the effect  of a specific 
constraint on maximal  allele  size.  Based on this  analytic 
characterization, we have developed new  distances that 
recover the linear relation with  time  even  when ranges 
are constrained. 

Our analysis incorporates what seems to us the sim- 
plest mutation process with  fixed range constraints. For 
all i allelic states for 1 < i < R symmetric  stepwise 
mutations  occur at a  rate p in each direction. For the 

boundary states I and R ,  mutation only increases or 
decreases size,  respectively, again at  a rate of p. In real- 
ity, it is clear that  the  mutation process has a much 
more complicated dependence  on allele size (RICHARDS 
and SUTHERLAND 1994; GOLDSTEIN and CLARK 1995). 
Unfortunately, the exact details of the  mutation process 
are  not sufficiently well understood to allow an accurate 
representation.  Furthermore, they are likely to mry 
from one type  of microsatellite to  another. As such 
details become available it will be worthwhile to develop 
more complicated models. In theory, the analytical ap- 
proach employed here allows arbitrary assumptions 
about  the  mutation process since an explicit transition 
matrix is used. In practice, however, it may be that all 
but  the simplest matrices will resist direct analysis. It 
seems reasonable to assume, however, that  the primary 
conclusions obtained  here reflect the existence of 
range constraints and are likely to apply when other 
assumptions are made about  the exact details of the 
process imposing the limits on size. This conjecture is 
supported by the qualitative similarity  of our results to 
those of GARZA et al. (1995) who used different analytic 
techniques and assumed a very different  mutation pro- 
cess. 

One important  general  point to emerge from this 
study is that it is probably not possible to develop a 
formally accurate analytic distance for microsatellite 
loci in the  general case in which mutation rates and 
range constraints vary across  loci. This follows from the 
form of the distance under range constraints, which 
necessitates multiplying distances across  loci before log- 
arithms are  taken. Because of the high variance of the 
underlying distance, this process invariably  results in 
log domain  errors  and is therefore essentially  useless. 
On the  other  hand, we have  shown that if a large set 
of  loci  with  sufficiently similar mutation rates and  range 
constraints can be identified,  a simple analytic correc- 
tion can provide a distance that is much less  biased 
than existing distances. An interesting and unusual 
property of the new distance is that its linearity increases 
with the  number of loci.  Most importantly, we have 
used computer simulations to show that even though 
it is formally insufficient to recover linearity in the case 
of variation among loci, the simple correction i s  not 
strongly  sensitive  to such variation. If loci can be  clus- 
tered at least to within a factor of 5 or so, Dr. can be 
expected  to substantially improve linearity. 

Our analysis  also  provides a framework for comparing 
the  expected behaviors  of different distances as func- 
tions of the particular loci and phylogenetic problem 
under study. For example, for studies involving a rela- 
tively large number  of taxa, it is possible to obtain esti- 
mates of the parameters of each locus under study (POL 
LOCK et al. 1996).  Once  the parameters have been 
estimated, observed distances can be compared with 
(24) to assess whether  the  separation time is beyond 
the useful range of the locus. Furthermore, it is possible 
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to use the analytic expectations developed here to com- 
pare  the behavior of  stepwise and nonstepwise  dis- 
tances. In particular, it is important  to delimit the 
boundaries of the window  of time within  which  stepwise 
distances outperform nonstepwise distances (GOLD- 
STEIN et al. 1995a,b).  These considerations suggest that 
variation at certain microsatellite loci might not be use- 
ful for some phylogenetic problems. Just as one would 
not use sequence variation in histones or  other slowly 
evolving proteins to assess relationships among closely 
related species, one must choose microsatellite appro- 
priate  to  the phylogenetic problem under study. For 
example, in studying relationships among  more diver- 
gent taxa, it is necessary to choose microsatellites that 
(1) have not degraded in either taxon, (2) have  suffi- 
ciently large ranges, and  (3) have a sufficiently  small 
mutation rate. It is  well  known that these parameters 
vary among types  of microsatellite loci (WEBER and 
WONG 1993).  Therefore, it is little wonder that  the a p  
plication of microsatellites chosen strictly on the basis 
of polymorphism in a focal species has been of relatively 
little use in recovering interspecific relationships. The 
challenge now  is to develop the machinery necessary 
to estimate the parameters of microsatellite loci. Once 
these parameters are estimated, models like the  one 
described here can be used to partition microsatellites 
into categories appropriate  for different kinds of  phylo- 
genetic problems. Finally, the statistical properties of 
the distance to be used must be considered to deter- 
mine  the minimum number of loci required  for a speci- 
fied degree of accuracy. In  general, we expect that  the 
requisite number will be somewhat larger than is cus- 
tomary at present. While the exact numbers will depend 
on the phylogenetic problem at  hand  and on the exact 
parameter values estimated, we doubt that fewer than 
-15-20 microsatellites will ever provide very reliable 
estimates of interspecific relationships. Furthermore, 
we expect that some phylogenetic problems will require 
characterization of a great many more loci. Fortunately, 
eukaryotic genomes seem to  harbor sufficient numbers 
of microsatellites that reliable information should be 
obtainable if one is willing to invest the effort. 
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