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Introduction
All of biology is based on evolution. Evolution is the organizing principle for
understanding the shared history of all biological organisms. Evolution describes the
similarities between different organisms, as well as explaining how differences emerged.
In addition to answering basic questions about the history of life, evolutionary
perspectives and information drawn from evolutionary analyses can provide information
highly relevent to many biological, biotechnological, and biomedical problems. There is
also growing interest in mimicking evolution in the test tube in order to develop RNA,
proteins, and organisms with specified properties.

Increasingly, biocomputing has taken advantage of the methods and approaches of
evolutionary biology. This is due to the intersection of a number of different
developments: the availability of whole genomes from a growing number of organisms,
the availability of high-speed computational facilities that allow sophisticated
computational and statistical models, and the growing realization of the power of
comparative sequence analysis and how such an approach requires understanding the
ways that the corresponding organisms evolved and changed. There is, unfortunately, a
lack of understanding about how evolution occurs as well as the various tools that are
available to analyze evolutionary data. The purpose of this tutorial is to introduce
biocomputing professionals to both the approaches and methods.

Evolution will occur when three requirements are met: variation between offspring,
difference in survival probabilities due to these variations, and for the variations to be
heritable. In this tutorial, we first briefly describe the genotype of an organism, the DNA
that (generally) carries the inherited traits and is modified during evolution. We then
describe the random changes that can occur in the DNA, from small local changes to
more global rearrangements. We discuss how variations in the genome can be described,
and what happens to that variation. This leads to a discussion of some of the central
debates in evolutionary theory, specifically the role of adaption versus neutralism, the
consistancy of the molecular clock, and the role of population dynamics in the
evolutionary process. Finally we discuss the techniques that have been used to understand
and model the evolutionary process, including phylogenetic analysis.

This material is covered in depth in a number of books such as Fundamentals of
Molecular Evolution by Wen-Hsiung Li and Dan Graur, Physical Approaches to
Biological Evolution by Mikhail Volkenstein, Molecular Evolutionary Genetics by
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Masatoshi Nei, and Molecular Evolution: A Phylogenetic Approach, by Roderic Page and
Edward Holmes.

Introductory Genetics
With the exception of certain viruses, the basic carrier of genetic information is  DNA.
DNA is made up of four different bases (Adenine, Cytosine, Guanine, and Thymine,
abreviated A, C, G, and T) linked to a deoxyribose sugar and phosphate chain. The two
ends of the chain are called the 5’ and 3’ ends, after the organic chemistry nomenclature

for the constituent sugars. A and G are called purines and C and T are called pyrimidines,
based on the structure of the nitrogenous rings. In double-stranded DNA, T generally
forms a hydrogen-bonded pair with A, while C and G form a similar pair. The two
strands go in opposite directions, with the 5’ end of one strand aligned to the 3’ end of the
other strand. The form of these four base-pairs and the hydrogen bond are shown in
Figure 1. In eukaryotes, these long strands formed into DNA/protein complexes called
chromatin, which in turn are packed into structures called chromosomes. Each
chromosome has a special assembly called a centromere, which is central to segregation
of chromosomes during cell division.

Most organisms are either haploid or diploid. Haploid organisms have one copy of each
chromosome. Diploid organisms have two copies of each chromosome (except for the
sex chromosomes). These copies may be slightly different, but they are evolutionarily
related and are thus called homologous.

Figure 1: Hydrogen bond patterns for
complementary DNA bases.
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In order for the cell to divide, the genetic material must be copied. This can be performed
by using each strand of the double-stranded DNA as a template for generating a copy of
the other strand. In standard asexual cell division, or mitosis, each chromosome
individually duplicates its genetic material, as shown in Figure 2. Cytoskeletal structures,
called microtubules, attach to the centromeres and pull the two halves of the duplicated
chromosomes apart. For organisms with haploid genomes, mitosis is the only form of
reproduction. For diploid organisms, sexual reproduction is also possible. This involves
first producing haploid germ cells through the process of meiosis, followed by the sexual
association of two haploid germ cells (generally from different organisms) to yield a
diploid cell that undergoes further mitotic division to form the adult organism. Meiosis
also involves duplication of the genetic material, followed by segregation to yield four
germ cells, each with only one copy of each chromosome.

DNA is divided up into units called genes. Genes can be on either strand, and are oriented
in the 5’ side towards the 3’ direction. Thus genes on different strands are oriented in
opposite directions. In the past, a gene was considered as the DNA necessary to encode
the construction of a single protein. Things are now known to be more complicated, and a
single gene can encode an entire protein, a subunit of a protein, an RNA molecule, or
fulfill some other functional role. Most eukaryotic DNA consists of elements that are not
genes and are often of unknown purpose. They are sometimes refered to as “junk” DNA.

A locus refers to a location of a given gene in the genome. Different variations of the
genes are called alleles. If there are multiple alleles in a population, then the locus is said
to be polymorphic. As diploid organisms have two copies of each chromosome, it is
possible that an individual will have two different varients, that is, two different alleles. If
the corresponding genes are different in the two chromosomes, the organism is called a
heterozygote, while a homozygote would have two copies of the same allele.

Mitosis Meiosis

Figure 2: Diagram of mitosis and meiosis
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For the protein-coding regions, the DNA is translated into messenger RNA (again
through simple base-pairing). In addition to having a sequence complementary to the
DNA, RNA also uses uracil, U, in place of thymine, T. The RNA is then translated into
the protein sequence in units of three bases, called a codon. Each codon tells the cell
machinery which of the twenty amino acids to add next to the growing protein chain.
Almost all living organisms use the same translation between DNA and proteins, shown
in Table 1. (Mitochondria, for example, use a slightly different code.) For instance, the
sequence AUAUGUAUUAAGGCA would be read as AUA/UGU/AUU/AAG/GCA and
would code for the sequence Ile (AUA), Cys (UGU), Ile (AUU), Lys (AAG), Ala (GCA).
There are three triplets that do not code for any amino acid (represented with ‘-‘ in Table
1). These represent “stop” codons and result in the termination of the amino acid chain.

CODON AMINO
ACID

CODON AMINO
ACID

CODON AMINO
ACID

CODON AMINO
ACID

UUU Phe UCU Ser UAU Tyr UGU Cys
UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leu UCA Ser UAA - UGA -
UUG Leu UCG Ser UAG - UGG Trp
CUU Leu CCU Pro CAU His CGU Arg
CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Gln CGA Arg
CUG Leu CCG Pro CAG Gln CGG Arg
AUU Ile ACU Thr AAU Asn AGU Ser
AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg
GUU Val GCU Ala GAU Asp GGU Gly
GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly

Table 1: The genetic code

There are, of course, no markers indicating the boundaries between the codons (indicated
above with slashes). Correct translation involves starting at the correct point and
accurately translating the RNA sequence three bases at a time.

How the genome changes
The process of evolution works through the generation of random variation among the
offspring of each individual. This involves a change in the genetic material that is passed
on to the next generation. These changes can involve local changes in the DNA sequence
(genetic mutations), larger scale changes in the chromosomes (chromosomal mutations),
and loss or gain of chromosomes (genomic mutations):

Genetic mutations

The simplist genetic mutation involves a substitution of one base for another, for
example, an adenine becomes a cytosine, causing ATCCGTAGTCCTGAAT to become
ATCCGTCGTCCTGAAT. This can be caused by a number of possible events, such as
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tautomeric changes where a base is turned around in an abnormal position allowing non-
canonical base pairing, chemical modification of the DNA (generally deamination), or
radiation damage. Such changes can convert a purine to a purine (A_G) or a pyrimidine
to a pyrimidine (C_T), in which case the mutation is called a transition, or a change can
convert a purine to a pyrimidine or vice versa (A_T, A_C, G_C, or G_T), which are
called transversions. Eight of the twelve possible mutations are transitions. In spite of
this, evolutionary change generally involves 50% more transitions than transversions, as
these mutations are generally more conservative and less likely to cause less fit offspring.

In regions of the DNA that encode protein sequences, we can also classify mutations
according to whether the encoded protein sequence changes. As can be seen from Table
1, the genetic code is degenerate: certain codons (for example, AGA and CGA) code for
the same amino acid. A change in the DNA that does not produce a change in the
encoded protein (for example, an A_C transition causing AGA_CGA) is called a
synonymous or silent mutation, while a similar change that does change the expressed
protein (for example, an A_C transition causing AUA_CUA) is called a non-synonymous
or missense mutation. A change to one of the stop codons results in a premature
termination of the protein chain. These are called nonsense mutations. Approximately
70% of all changes in the third position of a codon are silent, while none of the changes
in the second position and only 4% of changes in the first position are silent.

A second form of genetic mutation is the insertion or deletion of segments of DNA.
These can be either a few bases, or much larger stretches. If a region of a protein coding
region is inserted or deleted that is not a multiple of three, this interrupts the correct
translation of the DNA into proteins after this point. This is called a “frame shift”
mutation. For instance, in the earlier example AUA/UGU/AUU/AAG/GCA was shown to
code for the sequence Ile, Cys, Ile, Lys, Ala. Insertion of a U in the middle of the
segment resulting in AUA/UGU/UAU/UAA/GGC/A would code for the sequence Ile,
Cys, Trp, stop. The synthesis of this protein would prematurely terminate at this point so
that any other amino acids encoded in the gene downstream of this site would be absent.

Chromosomal mutations

Larger mistakes can be made in duplicating the DNA. It is possible for a region of the
DNA to be duplicated. Often the duplication occurs so that the copy is adjacent to the
original, but the duplication can be reversed (so that the pattern on one strand becomes
copied to the other stand in the inverse order), or it can be duplicated in another part of
the chromosome or even on a different chromosome. These various possibilities are
indicated in Figure 3.
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Repeated elements are more likely to be repeated and thus generate larger repeated
elements. This can be understood as accidental base-pairing between highly-similar
elements. For instance, if expressed as DNA, it would be easy for the above sentence to
mutate to “Repeated elements are more likely to be repeated and thus generate larger
repeated and thus generate larger repeated elements.”

There are other ways that genes can rearrange. A larger section of the genome can simply
deleted, inverted to the other DNA strand, or translocated to anther part of the geneome.
These processes are illustrated in Figure 4.

The human genome has demonstrated the importance of transposable elements. These are
regions of DNA that are capable of either moving themselves to other parts of the
genome or directly making multiple copies of themselves. These units seem to exist as
independent elements, evolving independently of the host organism with a fitness that
only depends upon how many copies of itself it can make, and thus representing the
epitome of the “selfish gene” described by Richard Dawkins. These elements can have a
major impact on the evolutionary process, in that often adjoining regions of the DNA are
moved or copied along with the transposible element. In this way, the existence of these
“parasitic” elements may be more synergistic, in that their actions may speed the
evolutionary process.

All of the changes described above can occur in haploid as well as diploid organisms, and
primarily involve the process of DNA replication whether in mitosis or meiosis. Another
common and important form of genomic change involves the exchange of information

Tandem duplication

Displaced duplication

Reversed duplication

Parent

Daughter

Parent

Daughter

Parent

Daughter

Figure 3: Duplication events
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between homologous chromosomes, that is, between the two similar chromosomes in a
diploid organism.

Consider the diagram of meiosis in Figure 2. This diagram shows the relationship
between the two homologous chromosomes. Following replication of the DNA, the
homologous chromosomes arrange themselves in the midplane of the cell, and division
occurs so that one copy of each (duplicated) chromosome goes into each resulting cell.

The lining up of the chromosomes is important, so that each of the resulting cells receives
exactly one copy of each chromosome. In order for this to happen, the two homologous
chromosomes have to identify similarities in each other. This process generally involves
a “cross-over”, that is, the swapping of some DNA between the two homologous
chromosomes, as shown in Figure 2.

This procedure is shown more fully in Figure 5. Two homologous chromosomes are
shown, each containing five genes. (In reality, genes are spaced out rather sparcely on the
chromosomes.) The two homologous genes are shown in similar shading, but the
difference in thickness represents the fact that there may be some differences between
these genes. In A), the crossover event occurs between genes 2 and 3, resulting in the
offspring getting a chromosome with a set of genes not found in any chromosome of
either parent. Occassionally an uneven crossover occurs, resulting in one chromosome
with a deleted copy of a gene, and one with an extra copy. The offspring will then have a
different number of such genes from either parent. Finally, there is the process of gene
conversion, where the gene in one chromosome is replicated to be identical to the gene of
its homologous partner. This often occurs with crossovers at this location.

Deletion

Translocation

Inversion

Parent

Daughter

Parent

Daughter

Parent

Daughter

Figure 4: Deletions, inversions, and translocations
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Genomic mutations
It is possible for entire chromosomes to become duplicated, often as a result of errors in
meiosis. Such mutations are generally lethal. The most common form in humans is
Down’s syndrome, where the individual receives an extra copy of Chromosome 21. It is
not believed that chromosomal duplication has had a significant impact on genome size.
It is also possible for the entire genome to be doubled. This is actually not rare in plants;
many hybrid plants are tetraploidal. Following evolutionary divergence of the doubled
chromosomes, it is possible for these organisms to evolve to a standard diploid
configuration with a genome twice as large. It has been hypothesized that a number of
genome doubling events were crucial at various stages of evolution. In general, these
hypotheses are not supported by the observed genomes.

Fate of duplicated genes
A number of the processes described above results in an extra copy of a given gene, so-
called gene duplication. There are a number of possible fates for such a gene. It may be
that there is an advantage to the organism to having multiple copies, especially if the
protein is needed in a large quantity. Multiple identical genes in the genome, for instance,

B) Uneven crossover leading to gene deletion and duplication

A) Homologous crossover

C) Gene conversion

Figure 5: Crossover events
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encode histones. Alternatively, the gene can be able to undergo further mutations until it
has lost all function; mutations in the adjacent regulatory regions can cause this protein to
be unexpressed. Such genes are called “pseudogenes”. Finally, the gene can evolve to
fulfill a completely different function. The flexibility resulting from gene duplication may
have had a major impact on evolution.

Classical Theory of Gene Dynamics
Consider a gene where there is a dominant variation or allele. Let us call this allele the
“wild type”. A different version of the gene, a new allele, can result from random
variation due to any of the previously-described errors in conservation or replication.
There are three possible fates of this gene. The individual or the descendents of the
individual can fail to reproduce in which case this different allele is removed from the
population. Alternatively, the new allele can spread throughout the population so that it
now becomes the new "wild-type". This process is called fixation. Prior to removal or
fixation, when both versions of the allele are present in the population, the locus is said to
be polymorphic. Under certain selective regimes called balanced polymorphism, the new
allele neither dies out nor replaces the wild type, but rather is maintained at a particular
frequency. Let us see how these alternatives are possible.

Consider a diploid organism, that is, with two copies of each gene, one of which is

Figure 6: Gradual fixation of a advantageous mutation starting with an
initial frequency of 0.01. The relative fitnesses of the various genotypes are
s_{BB}=0.01 and either s_{AB}=0.00 (solid line, corresponding to a recessive
mutation), s_{AB}=0.005 (dotted line), or s_{AB}=0.01 (dashed line,
corresponding to a dominant mutation). The recessive mutation requires
longer for fixation due to the slow buildup of BB homozygotes with a
competitive advantage. Conversely, it is difficult to achieve total fixation of a
dominant advantageous mutation because of the relative fitness of the
heterozygotes.



10

transferred to the next generation. We will call the wild-type allele A and the mutant B.
There are then three diploid genotypes possible, AA, AB, and BB. Remember that an
organism is called a homozygote if both alleles are the same (AA or BB in this example);
otherwise it is a heterozygote. If the fraction of the gene A in the population is p and the
fraction of gene B in the population is q (so that q = 1 - p), then at equilibrium where
these ratios are maintained and where mating is random the population will have
genotype AA with frequency p_, genotype AB with frequency 2pq, and genotype BB
with frequency q_ - the Hardy-Weinberg equilibrium. Since Hardy-Weinberg equilibrium
is achieved after one generation in a randomly mixing population, it will approximately
hold even when these different genotypes correspond to different genotypes with
different fitnesses, where the fitness measures the relative probability of contributing to
the next generation.

Let us consider the relative fitnesses of these three genotypes as _AA, _AB, and _BB,
respectively. Often we consider fitnesses relative to the wild type AA, so _AA = 1, _AB = 1
+ sAB, and _BB = 1 + sBB. For an infinite population and the values of p and q for any
given generation we can calculate how much of each allele will be present in the next
generation. q, the fraction of allele B in the next generation, will given by

Figure 7: Population dynamics with overdominant selection where
the heterozygote has increased fitness relative to either homozygote,
for a range of initial gene frequencies. The relative fitnesses of the
various genotypes are s_{AB}=0.02 and s_{BB}=0.01.
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Figures 6 and 7 show two different examples. In Figure 6, we consider the case where the
new mutant gene is advantageous with sBB = 0.01. The new allele B is fixed in the
population with probability 1 with dynamics that depend upon the heterozygote fitness
sAB. In Figure 2 we have what is called overdominant selection where the heterozygote
AB has the highest fitness: in this case sAB = 0.02 and sBB = 0.01. (The classical example
of overdominance is the mutation for sickle-cell anemia, where the mutant homozygote
(BB) is lethal, yet the heterozygote (AB) has increased resistance to malaria.) The result
is relaxation to a constant steady-state population of some B for any initial population.

Finite Populations and the Neutral Theory
The eventual fate of a mutant gene is deterministic if the population is infinite: there are
differential equations that can be solved to give the behavior described above. In reality,
populations are quantized and finite. This can have a strong impact on the fate of various
alleles. For instance, imagine that neither allele has a selective advantage so that the
fitnesses of all three possible genotypes are equal. In this case, the population dynamics
of infinite populations would result in the proportion of the two alleles remaining
constant in a Hardy-Weinberg equilibrium. In a finite population eventually either the
mutant allele would be eliminated or achieve fixation, at least if additional copies of the
mutant allele are not produced by further mutations. This is because random fluctuations
in the allele fractions would occur; with a finite probability that any allele frequency
would decrease to zero from where it cannot recover without further mutations of the
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Figure 8: The results of five different runs of two populations of equal fitness, for a
constant population of size 50. One allele is generally either fixed or eliminated.
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wild type. This process is illustrated (for an extremely small population) in Figure 8. The
discreteness of the population is key to this process, as there have to be an integral
number of copies of each allele. Consider a single copy of a new allele in a population of
size N (so that q = 1/2N, with the 2N coming from the fact that the individuals are
diploid). In the simplest case the heterozygote has the average fitness of the two
homozygotes so we can write _AA = 1, _AB = 1 + s, and _BB = 1 + 2s. Kimura derived the
probability of eventual fixation of B

)4exp(1

)/2exp(1
fixation sN

NsN
P

e

e

−−
−−

= [2]

where Ne is the effective population size, that is, the population that is actually
reproducing at any one time. (For human populations, Ne ~ N/3.) Ignoring the difference
between N and Ne results in curves of P_{fixation} as a function of s for different
population sizes as shown in Figure 9. As would be expected, for a neutral mutation (s =
0) the probability of eventual fixation represents the initial fraction of the population,
Pfixation = 1/2N. In fact, all mutations with values of |s| < 1/2N have approximately
probability 1/2N of fixation; these mutations are essentially neutral. For larger values of
s, the probability of fixation becomes Pfixation = 2s. For finite populations there is a chance
of a negative mutation becoming fixed in the population, just as there is a chance of a
positive mutation being removed.

In classical evolutionary theory, the process of evolutionary change was dominated by
chance advantageous mutations that became fixed, what is called adaptive evolution.

Figure 9: Probability of fixation of a mutation with initial
frequency 1/2N as a function of s for various population
sizes: N=100 (dotted line), N=1000 (dashed line), and
N=10000 (solid line). The difference between population
size and effective population size is ignored.



13

Kimura and Jukes and King proposed the neutral theory, which postulated that the vast
majority possible mutations are either deleterious or neutral (|s| < 1/2N). As the
deleterious mutations will generally be removed from the population by purifying
selection, most observed substitutions would be neutral or slightly deleterious. This was
used to explain four observations. One observation had to do with the large variation in
genotypes in a typical population. It was observed that many genes were polymorphic,
that is, multiple alleles exist in the population. In the classical theory, polymorphism
could result from overdominant selection (as shown in Figure 7) or from frequency-
dependent selection - where there was an advantage to being different from others in the
population. In these cases there was selective pressure towards polymorphism. According
to the neutral theory, polymorphism was generally a temporary result of a nearly-neutral
mutation that had not yet been either eliminated nor fixed. Fixation and elimination times
for neutral mutations are quite long, about 4N generations. Under these conditions it
would be natural to have a large amount of polymorphism in the population. Kimura
claimed that the amount of polymorphism in observed populations was too large to be
explained by positive adaptation.

A second observation was that any particular gene often tends to evolve at a roughly
constant rate in different organisms, that there is a molecular clock. (This is not to say
that different genes evolve at the same rate - there are quite large variations in the rate of
substitution of different genes.) Figure 10, for instance, shows the relationship between
the time of divergence of various species from humans according to the fossil record
compared with the dissimilarity in the sequences of alpha-Hemoglobin; the near straight-
line behavior across such different organisms (with the exception of chicken) is striking.
This molecular clock is a natural result of the neutral theory. Neutral mutations in a
population should arise at a rate proportional to the number of genes in the population,

Figure 10: Evidence for a molecular clock. Plot
shows the relative time of divergence from
man according to the fossil record compared
with the sequence divergence. Adapted from
Volkenstein 1994.
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2_N. The probability of fixation is 1/2N. Multiplying these two factors together, the total
rate of introduction and fixation of neutral mutations should be _, independent of the
population size. This would explain the constant rate of genetic evolutionary change.
Conversely, for adaptive change the fixation probability is 2s, resulting in a total rate of
introduction and fixation of 4_Ns, proportional to the population size. This would be
incompatible with the molecular clock hypothesis.

A third observation was that important genes evolve slower than less-important genes,
which evolve slower than regions of the genome that do not seem to serve any purpose. If
most mutations were either neutral or disadvantageous, the importance of the gene will
correlate with the likelihood that changing the gene will be deleterious. As a result,
mutations in less-significant regions of the genome will have a smaller probability of
being removed by purifying selection, and thus more chance at fixation.

The last observation has come with the rise of genetic observation and manipulation.
Many substitutions at the DNA level do not change the amino acids of expressed proteins
- these are called synonymous substitutions. It is likely that the vast majority of these
substitutions are essentially neutral. Additionally, is now clear how plastic the resulting
amino acid sequences are, that it is not difficult to find many amino acid substitutions that
results in proteins with seemingly identical properties. Many of the changes that we can
make in the lab seem to be neutral, at least within the accuracy and the context of the
experiments.

The neutral theory does not downplay the role of adaptive change. Obviously the
characteristics of living creatures show that we are highly adapted to our surroundings.
The argument is that adaptive changes, though important, are extremely rare and that
most substitutions are either neutral or deleterious. As will be discussed below, one
reason for the presence of neutral change at the genetic level is the many-to-one mapping
of genotype to phenotype.

One additional concept introduced by Stephen Jay Gould is the idea of the spandrel.
According to Gould, certain features of an organism might arise from reasons having
nothing to do with selection, either through random neutral drift or as an unavoidable
consequence of some other modification. The organism might then be able to adapt this
feature for adaptive purpose. Accordingly, it is dangerous to explain the existence of this
feature as arising as a positive adaptation towards its eventual purpose, what he called the
"Panglossian paradigm" after the character in Voltaire's Candide who sees everything as
optimal in this "best of all possible worlds".

Is the neutral hypothesis correct? This is still a topic of much debate. The degree of
polymorphism seems to be somewhat between the rate predicted by adaptionists and
neutralists. While there seems to be some degree of constancy to the rate of evolution of
each gene across different evolutionary lines, the molecular clock seems to run somewhat
erratically. Neutralists claim that these irregularities can be explained by accounting for
different rates of mutation, different generational times, and some adaptive bursts.
Adaptionists can also explain why important regions of the genome evolve slower than
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less-important regions: genetic changes in the less-important regions of the genome result
in smaller changes in fitness, and smaller changes in fitness are more likely to be
advantageous than a larger changes. While it is true that it is not difficult to make genetic
changes that have no observable effect on the phenotype or on the organisms chance for
survival and reproduction, effects too small to be seen in the lab may still have a large
impact on the evolutionary process. Even synonymous substitutions in the DNA code that
have no effect on the amino acid sequence of the expressed proteins can affect the
probability of survival by affecting the rate of protein transcription.

Eigen's theory of quasi-species
Kimura's neutral theory includes aspects of random change due to the finite size of
populations, resulting in stochastic effects that are not included in the infinite-population
differential equations. But this model still involves a homogeneous population in which
mutations occurs. The polymorphism is a result of the evolutionary dynamics, rather than
a critical component. These aspects were to change with the introduction of the theory of
quasi-species.

It is easiest to consider the situation by considering a fitness landscape, a term first
introduced by Sorvell Wright. The fitness landscape consists of a sequence space, that is,
the space of all possible sequences, combined with a fitness value for each point. Each
dimension in the fitness landscape corresponds to one allele or base or amino acid. As a
result, the sequence space (as well as the fitness landscape) is extremely high-
dimensional. It is a strange space, however, in that only relatively few discrete values in
each dimension are allowed. For proteins, for example, each dimension consists of
twenty discrete points representing the twenty amino acids. A typical simple fitness
landscape for a trimer in a two-letter code (A and B) is shown in figure 11. Again, this
diagram does not do justice to the high dimensionality of the space. Another useful but
misleading representation is where the discrete nature of the sequence alphabet is
ignored, resulting in diagrams such as figure 12. The advantage of this representation is
that it provides an intuitive idea of fitness peaks, valleys, and ridges.

Eigen modeled evolution by considering a flow reactor containing self-replicating
molecules of RNA, with an influx of mononucleotides and an outflow to keep the

Figure 11: An example of a fitness landscape of a trimer
written in a two-letter alphabet. The left of the diagram
shows the available sequences and their connectivities,
while the right of the diagram shows the corresponding
fitnesses.
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concentration constant. As with biological RNA, the replication rate is not perfect, but
mutations naturally arise. The dynamics can be treated with standard approaches from
chemical engineering. The result indicated that rather than having a single "wild-type"
genotype, instead there would be a cloud of different genotypes centered in the sequence
space around a prototypical sequence. The cloud could represent the ultimate steady-state
solution -- not a transient phenomenon eventually resolved by natural selection. It was
then possible to talk about the evolutionary process in terms of changes and competition
between these various clouds, which took on the role of species in classical evolutionary
theory and thus were named quasi-species. Eigen's results demonstrated that in order to
consider the fitness of any particular quasi-species, it was necessary to consider the
fitness of the prototypical sequence as well as the surrounding sequences. A broader,
flatter, but lower fitness peak could out-compete a sharper, narrower albeit higher fitness
peak, depending upon the overall mutation rate. Finally, there could be qualitative
changes in the evolutionary process brought on by quantitative changes in the mutation
rate. Specifically, there was a certain critical mutation rate above which the evolutionary
dynamics became random and incoherent, with a loss of the genetic information.

Again things change when we consider finite populations, due to the resulting stochastic
nature of the evolution as well as the discrete nature of the individuals. On a flat fitness
landscape an infinite population would expand to fill the available space. In reality, the
cloud of members retains its cohesiveness. The edge of the cloud is characterized by a
dilute population of members. Such members are highly unstable with respect to
evolution, in that any fluctuations in population that take their number down to zero
results in an extinction of this subpopulation from which it cannot recover. The center of
the cloud is more resistant to these fluctuations. The result is that there is a tendency to
eliminate the outlying members of the population cloud, so that the cloud remains
centered on the prototypical sequence. The resulting cloud can then wander in a
stochastic manner in the fitness landscape.

One of the more important results of this approach towards evolution is the dependence
of the evolutionary process on the fitness landscape. Certain characteristics of the
landscape have been especially emphasized by Schuster, Fontana, and their co-workers.
They investigated the fitness landscape for RNA molecules, taking advantage of rapid

Figure 12: Fitness landscape with sequences represented
as continuous variables.
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algorithms for computing the ground state conformation. They found that these molecules
had a large degree of neutrality, that is, it was possible to make large changes in the
sequence while retaining the same structure. Considering the sequence as genotype and
the structure as phenotype, there would be many changes in genotype consistent with a
single phenotype. The many-to-few sequence to structure mapping results in large
"neutral networks", that is, regions in the sequence space with constant fitness.

The dynamics of the population cloud combined with the large neutral networks can have
a large impact on the evolutionary dynamics. The sequence cloud is free to randomly
sample the neutral network. The individuals on the tail of the cloud allow the population
to sample the fitness landscape at some distance from the prototypical sequence in a large
number of different directions. If the tail of this distribution overlaps a region of higher
fitness, the whole cloud can adapt in this direction with a small change in sequence.. Note
that the resulting dynamics (long periods of neutral evolution, punctuated by rare but
rapid adaptive change) is exactly what is described by Kimura's neutral theory.

In this model, the properties of the intersection points between various neutral networks
become critical. One important property of the fitness landscape is how close the various
neutral networks were to each other. For RNA, it is possible to go from one native
structure to almost any reasonably common different structure with only a small change
of the sequence, a phenomenon known as shape-space covering. As a result RNA can
evolve quickly for different structures and possibly different functions. This phenomenon
seems not to be true of theoretical models of proteins, in that it is more difficult to go
from one structure to another. As a result, evolutionarily-related proteins tend to have the
same structure, something called "structural inertia". This may be due to the larger
number of amino acids compared with the number of RNA bases, or the relatively small
number of sequences that will form a viable protein in any structure.

To summarize the previous section:

• We must include the role of stochastic effects resulting from finite population
sizes.

• We should be aware of the presence and effect of neutrality in the fitness
landscape. One reason for this neutrality is the many-to-few mapping of genotype
to phenotype.

• The properties of the fitness landscape such as the size, distribution, and
connectiveness of the neutral networks can have a major effect on evolutionary
dynamics.

• Techniques drawn from statistical physics are useful in understanding evolution;
it is a natural approach to dealing with the general properties of a large number of
individuals behaving stochastically.

• Selective pressure does not necessarily result in the organism selecting the highest
peak on the fitness landscape. It is not correct to equate evolution with
optimization, or even adaptation.
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• Even if a feature fulfills some important function, we cannot conclude that feature
evolved in an adaptive way to fulfill this function. These features may represent
spandrels.

Modeling evolutionary change

The rate of evolutionary change in DNA depends on the nature of the change as well as
its location in the protein. Those regions that encode proteins change more slowly than
so-called “junk” DNA. Synonymous changes occur more frequently than non-
synonymous changes, and changes occur to important proteins more slowly than to less
critical proteins. Non-coding regions change at the rate of 3 x 10-9 substitutions per site
per year. Synonymous substitutions in coding regions occur at a similar rate. Non-
synonymous substitutions vary greatly, from approximately zero in histones to 3.06 x 10-9

in Relaxin. There are some examples where the rate of non-synonymous substitutions is
actually larger than the rate of synonymous substitutions. This is generally seen as
evidence of adaptive evolution.

The simples possible model for DNA change is to assume that all substitutions occur at
an equal rate, α, the model developed by Jukes and Cantor. For four equally-likely bases,
it is straightforward to write down expressions for Pxx(t), the probability that a base x at
time 0 is still x an evolutionary time t later, as well as Pxy(t), the probability that a base x
has been replaced by a base y.

Pxx t( ) =
1

4
+

3

4
e−4 t

Pxy t( ) =
1

4
1 −e−4 t( )

 [3]

As described above, transitions and transversions generally occur at different rates.
Kimura (1980) developed a slightly more complicated model, where the rate of
transitions is α, while transversions occur at a different rate, β.
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 [4]

In this case, the substitution probabilities at any time t are given by
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At the same time, Felsenstein developed a model that accounted for varying base
frequencies, πx (where x is A, G, C, or T) by making the substitution rate proportional to
the base frequencies. The Kimura and Felsenstein models were soon merged by both
Felsenstein and Hasegawa, Kishino, and Yano in what is commonly called the HKY
model. In this model, the substitution rate is proportional to both a rate parameter (e.g, β),
and the equilibrium frequency of the base that is changed to. This model shares a useful
feature with many other models of the evolutionary process, which is that it is reversible
and obeys what physicists call “detailed balance”, that is, the flux from x to y is equal to
the flux from y to x. In this case the composition of the four bases are constant in time,
with the extra constraint that their frequencies sum to one. The maximal extension of this
kind of model is what is termed the general time-reversible model (GTR), in which there
are six free rate parameters, λxy, controlling the rate of exchange in both directions
between each pair of different nucleotides, x and y. If the reversibility criterion is relaxed
such that λxy¹ λxy, the number of rate parameters doubles to 12, but this makes the
calculations more difficult and is not commonly seen as a useful modification.

A more fruitful and necessary development was to consider that the average substitution
rate might vary amongst sites. This is often accounted for by assuming that the rates are
gamma distributed (Figure 13), a model first successfully implemented by Yang. In these
models, the equilibrium frequencies and relationships between the rates within the model
remain constant, but the rates of each site relative to other sites are allowed to vary. The
gamma distribution, chosen for its flexibility rather than any underlying biological
motivation, is modeled by an approximation where average rates are calculated for
discrete segments, often only four. Sites can also be divided into pre-specified categories
with different average rates, and this is a common first-pass approach for dealing with the
different codon positions, which are known to change at different rates according to their
probability of changing an amino acid, and the probability that the changed amino acid
has very different physicochemical properties.
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Figure 13. Five gamma distributions at the same scale,
with shape parameters equal to 0.2, 1, 5, 25, and 100.

For both the single rate and the gamma models, the most complex model for which
analytical transition equations (such as Equations 3 and 4) exist is the Tamura-Nei model,
which is a slight extension of the HKY model to allow different transition rates between
purines and between pyrimidines. These equations are often inverted to estimate the
number of substitutions between sequences, molecular distances, from the observed base
frequencies and base substitutions, Pxy. With Kimura’s model, for example, if the
proportion of observed transitions (Pxy, where x and y are in the same nucleotide class) is
P, and the proportion of observed transversions (Pxy, where x is a purine and y is a
pyrimidine, or vice versa) is Q, then the molecular distance estimate for the number of
substitutions (  2 t + 4 t ) is
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The accuracy of these distances can be assessed using analytical estimates of the variance
of these estimators, which can also be calculated directly. An interesting phenomenon
with distances from models more complicated than Jukes and Cantor is that when
accuracy is measured by mean square error (MSE=variance plus square of the bias) or by
utility in tree reconstruction, the appropriate analytical distance measures are often less
accurate than distances based on simpler models. In the realistic case where the transition
rate is considerably higher than the transversion rate, there is a large range of times where
the transition parameter in Equation 5 cannot be estimated accurately, and its variance is
so large that it dominates the variance of the entire estimator. The solution is to estimate
the transition and transversion components separately and get an average estimate of their
ratio from many sequences. This ratio can then be used to recombine the components
with generalized least squares, resulting in a distance that is both more accurate and less
biased than distances based on simpler models. If computational time is not critical,
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accurate distances can also be estimated using maximum likelihood (see below), but it is
still essential to obtain relative rate ratios from multiple sequence comparisons. The
simple distance equations should not be used.

As the substitution models become more complicated, the computational time required
for maximum likelihood (ML) calculations increases roughly as a multiple of the number
of parameters. This is because, by definition, ML involves finding the maximum of the
likelihood function, which means finding the set of all the parameter values that has the
highest probability of having produced the sequence data. Furthermore, with smaller data
sets there is a definite risk of over-parameterizing the model. Since many of the models
described above are nested, it is useful to compare the difference in the log likelihoods of
each model when the parameters are maximized with respect to the likelihood function.
Twice the cumulative density function (cdf) of this statistic can be approximated by the
chi-square distribution χ2

η, where η is the number of degrees of freedom separating the
two nested models (that is, the difference in the number of parameters between them). If
the chi-square assumption is in question, the cdf can be determined by parametric
bootstrapping, which involves numerical simulation of the simpler model using the
maximum likelihood estimators (MLEs) to see how large the log likelihood differences
between the models would be due to chance alone.

In order to accommodate amino acid substitution, the substitution model must expand to
20 states at a minimum. In a general reversible model, there would be 219 free
parameters, which would lead to dramatic over-parameterization in most data sets if they
were allowed to freely optimize. Instead, amino acid substitution models are often
generated by counting substitutions in a large number of sequence comparisons,
sometimes including all proteins in the available database, with the counts adjusted for
the total number of counts observed in each individual protein in the database, which
accounts for varying mutability between proteins. The original such mutation data matrix
(MDM) was Dayhoff’s point adjusted mutation (PAM) matrix, which was calculated
from simple trees and parsimonious reconstruction of ancestral states. A simpler pairwise
approach was utilized by Jones, Taylor, and Thornton to automatically create a matrix
from the by then dramatically larger sequence databases, and Koshi and Goldstein
showed that these matrices could be more accurately reconstructed using maximum
likelihood techniques that integrate over all ancestral states, albeit with a considerable
computational burden. MDMs have at this time been created from many, if not most,
conceivable subsets of the protein databases, with the most important modifications being
segregation by rate of substitution and by secondary and tertiary protein structure. The
BLOSUM matrices are created using only more divergent proteins, and are preferred for
use in detecting remote homology relationships when scanning databases. Structural
categories seen to have important differences in their substitution matrices include alpha
helices, beta sheets, and loose coils, internal and external sites, and transmembrane
regions.

It is also possible to model evolution of codons using a 64 x 64 transition matrix. A
general reversible model of such a matrix would have 2016 transition parameters in
addition to 63 free equilibrium frequencies, which is at this time far too many, and such a
model has not been utilized. Rather, codon matrices are generally constructed using a
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single nucleotide model for synonymous changes, and overlaying a matrix of amino acid
substitution probabilities. Such models assume that there is no effect of the codon on
these two models, that is, that amino acid substitution probabilities are not affected by the
codons as long as the substituted codon is directly accessible, and that synonymous
nucleotide substitution probabilities are not affected by the codon they are in. The former
assumption is intuitively reasonable, but the latter assumption is known to be
demonstrably wrong: many cases of “codon bias” have been documented, particularly in
highly expressed proteins. Thus, this assumption is likely to be dropped in future models
for large data sets as computational power increases. Another feature of the way these
matrices are constructed from compound amino acid and nucleotide substitution matrices
is that only single substitutions between codons are considered. This assumption also
appears reasonable, except that in population processes, double substitutions can occur at
rates that are faster than the simple multiple of their individual probabilities, particularly
when selection is involved. Deleterious but recessive alleles can rise to reasonably high
numbers in large populations, and so stand a reasonable chance of mutating to a second
allele that is no longer deleterious, or even advantageous. This sort of evolutionary
tunneling has been shown to occur in paired sites in RNA helical structures, and it is
reasonable to infer that it may also occur in proteins.

Rather than use a pre-specified MDM, it is also possible to create an MDM based on
some function of the physicochemical properties of the amino acids. Such functions have
been created for use in codon models by Yang, for site-specific amino acid frequency
models by Bruno and Halpern, and for the k-class models used by Goldstein and
colleagues (see below). These functions are sometimes more or less loosely based on
principles of fitness and the probability of substituting less fit amino acids, but they are
also used similarly to the gamma model, as convenient functions that can be tested and
optimized to see what is the best way to match the data without adding too many extra
parameters.

The k-class models are probably the most notable recent addition to protein evolutionary
models, in that they are the first to allow for multiple classes of distinct rate patterns at
different sites. They also allow the data at each site to determine which rate class is most
appropriate by integrating over all rate categories at each site, in a similar fashion to the
way gamma models are implemented. This type of model has not yet been implemented
for DNA evolution, but promises to be useful enough that implementation for DNA is
certain to be forthcoming in some standard programs in the near future. A very recent
innovation is the use of empirical “energy potentials” derived from three-dimensional
structures. These have been used in the context of a sequence threaded onto a known
structure to create substitution probabilities that are dependent on the local residues in
existence at the time the substitution occurs.
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Probability Calculations on Phylogenetic Trees

Since sequences are not independent realizations of a particular protein, but rather are
related by the gene duplication and serial speciation events that have occurred in their
history, any calculations beyond a first pass approximation must take these relationships
into account. A statement of these relationships is a phylogenetic tree, which includes
information on the relative order in which the gene duplication and speciation events
occurred, and also the amount of time (or probable number of substitutions) separating
different events. In a rooted tree (Figure 14), the root or top of the tree is the deepest
point, and is considered the ancestor of all the other sequences. Evolutionary time
proceeds with movement along the tree in a downward direction from the root, until the
tips of the tree are reached, which represent the descendent sequences in the sample. For
purposes of calculation, and because gene duplication is a binary splitting process,
phylogenetic trees are usually represented as purely bifurcating trees, without any higher
multifurcations. Since two genes never become one, there are also no networks, although

attempts to represent recombination can make these graphs considerably more
complicated. When the process is viewed moving backwards in time, the lineages can be
said to coalesce, although that terminology is more commonly used within populations.
Oftentimes, determination of the root of a tree is one of the more problematic possible
inferences, and for reversible models the placement of the root does not affect probability
calculations. Therefore, it is common to represent the tree as an unrooted tree (Figure 14),
where no statement is made as to which point is ancestral to all other points.

The lines between gene duplication are called branches (equivalent to edges in graph
theory), while the points where gene duplication occurs are called nodes (vertices). The
tips where the sequences reside are sometimes called external nodes, and are connected to
the rest of the tree by external branches, whereas the remaining branches are called
internal branches, and the remaining nodes are internal nodes. For any unrooted tree with
N sequences, there are 2N-3 branches, N of which are external, and N-3 of which are
internal. There are N-2 internal nodes. The order in which the branches occur,
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irrespective of the branch lengths, is called the topology of the tree, and the number of
possible unrooted topologies relating a set of sequences rises extremely quickly as

  
2i − 5

i=3

N

∏  [7]

The topology and branch lengths of a phylogenetic tree may be considered parameters of
a model that includes the phylogenetic tree. Various values for these parameters need to
be considered in order to find the most plausible tree or set of trees given the data, but for
a particular tree with specified topology and branch lengths, and the particulars of the
model of substitution, such as the equilibrium frequencies, substitution probabilities, and
any other parameters germane to the model, it is possible to calculate probability directly.

Substitution probabilities for any time t (or branch length, b) are generally calculated by
integrating over all possible paths that might have led to the substitution of one
nucleotide, amino acid, or codon, for another. Since general equations for these
probabilities do not exist except for the simpler DNA models, these probabilities are
determined by taking the exponential of the instantaneous transition probability matrix,
eQt, which is defined as Se-ΛtS-1, where S, Λ, and S-1 are the matrix of eigenvectors, the
corresponding diagonal matrix of eigenvalues, and the inverse of S, respectively.

For a reversible model, calculation of the likelihood or probability of a phylogenetic tree
given the data may begin at any point on the tree, which will be considered the starting or
root node, R, for calculations. Assuming independence between sites, the likelihood for
the entire data set is the multiplicative sum of the likelihoods at each site, and the
likelihood at each site is the sum of the likelihood of each of the possible states multiplied
by the equilibrium frequency of those states, or

L = k P(Di | Ri = k)
k= 1

K

∑
l=i

L

∏ , [8]

where L is the length of the sequence alignment, K is the number of states, and i and k
are the site- and state-specific subscripts, respectively. Di is the sequence data at site i in
the alignment. The likelihood of each state, k, is the multiple of the probability of
producing the data on each branch leading away from the root node, and these branch-
specific probabilities, or fractional likelihoods, are simply the probability of the data
below the descendant node times the probability of changing from state k to state j along
a branch of length b, or

P(Di | Ri = k) = Pkj b( )P(Di ,N | Ni = j)
j

K

∑
b

BR

∏ , [9]

where BR is the number of branches leading away from the root, N is the descendant node
on the other end of the branch, and Di,N is the subset of data at site i that includes only
sequences ancestral to the descendant, N. Similar fractional likelihoods can be calculated
for each descendant node, N, considering only the branches leading away from the root,
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and so on iteratively until a tip is reached, at which point the probability of the observed
state is one and any other state is zero. Computationally, these calculations are made most
efficiently by beginning at the tips and proceeding iteratively upward through the tree to
the root.

Another criterion for comparing phylogenetic trees is the method of maximum
parsimony, in which the minimum number of changes possible is calculated for each
topology. This method does not take branch lengths into account, nor is it based on an
explicit model of sequence evolution, although different changes can be weighted
differently in the cost function. Changes are determined by making optimal character
state assignments (the ancestral states) at each internal node. Parsimony is
computationally much faster than likelihood calculations, and was important in the recent
past when computers were slower. It is less efficient at obtaining the correct answer than
likelihood, however, and is subject to a variety of biases, including “long-branch
attraction”, that make it less useful than likelihood. In addition, it lacks the power of
maximum likelihood and distance techniques to utilize and evaluate complicated
evolutionary models, and is less efficient at using additional sequence information to
increase the accuracy of topology reconstruction. For these reasons, parsimony is used
less and less as a primary means of evaluating topologies, although it remains popular for
analysis of its mathematical properties due to the simplicity of its calculations.

Searching Topology Space

Topology space, the set of all possible topological arrangements of phylogenetic trees,
becomes very, very large for even moderate number of taxa. For likelihood, parsimony,
and other criterion-based phylogenetic methods, it is therefore not possible to
exhaustively enumerate all topologies for all but the smallest datasets. For slightly bigger
datasets, the method of “branch and bounds” can be used, in which a pretty good tree is
found as quickly as possible. Topologies are then constructed by iterative hierarchical
addition of taxa, but whenever a topological route becomes worse than the best current
topology, it is abandoned, since the final topology (with a complete set of taxa) is
guaranteed to be worse still. For moderate or large numbers of taxa, heuristic methods to
move through topology space have been developed by trial and error, with the hope being
that topology space is smooth enough with respect to the search algorithm that all
reasonably probable topologies are visited, and in particular that no optimal topologies
are missed. The first step is to construct a reasonably good tree, and this is often done by
“stepwise addition” of taxa, where at each step a new taxon is added at the best spot on
the tree given the topology for the previous subset of taxa. This continues until all the
taxa are added. An alternative is “star decomposition” (Figure 15), in which the taxa are
all clustered together at a single point in the starting star phylogeny, and then branches
are added to separate clusters into smaller clusters, until the tree is entirely bifurcating.

Figure 15. Star decomposition
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Once an initial tree is constructed, topology space is generally traversed by some form of
branch swapping. The simplest procedure, which happens to work quite well, is “nearest
neighbor interchange”, where an internal branch is collapsed to a single node with four
branches emanating from it. A new branch is then added to separate these branches again
in any one of the three possible arrangements. Other procedures include “pruning and
regrafting”, where a branch leading to a subtree is cut off the main tree and this branch
then randomly reattached to some other branch in the tree, and “tree bisection and
reconnection”, where the tree is split into two subtrees that are then reattached by
creating a branch between randomly chosen branches in each tree. Despite the difficulty
of the problem, and the fact that “valleys” of suboptimal trees are sometimes encountered
that separate peaks in topology space, these methods often work surprisingly well.

When molecular distances are used, it is possible to develop a criterion for tree
comparison such as “minimum evolution”, where the tree is most preferred that can
minimize the difference between distances between species calculated on the tree and the
starting distances. It is more common (and much faster) to use a heuristic tree
reconstruction method to get a single tree estimate. The oldest and most obvious way to
do this is the unweighted pair group method using arithmetic averages (UPGMA),
whereby the taxa with the closest pair of distances are merged first, followed by the next
pair, and continuing until all groups are joined into a single tree. This method. UPGMA
does not take rate variation among branches into accounts, and can therefore be
deterministically wrong when such rate variation exists. For this reason, it is generally
preferred to use neighbor joining (NJ) or its derivatives. NJ also tries to join nearby taxa,
but adds the criterion that the pair should be farthest from all the other taxa. NJ has some
biases of its own, including the fact that results can deteriorate as distant taxa are added.
Recent advances have corrected some of these problems by using the variance of distance
estimates as a weight for both placing the node when taxa are joined (BIONJ) and
choosing which nodes to cluster (Weighbor).

An additional heuristic clustering class of methods are the quartet-puzzling methods. It
has already been mentioned that maximum likelihood can be used to obtain distance
estimates between each pair of species, and these distances can then be used to create a
tree using e.g., NJ. Similarly, in quartet puzzling the optimal topology and set of branch
lengths is found for each set of four species, or quartet. An algorithm is then used to sort
through or “puzzle” these quartets to find the topology that contradicts as few of these
quartets as possible. This method is slower than distance methods and faster than a
complete maximum likelihood solution, but is also less accurate than a maximum
likelihood solution, and it is uncertain if it is more accurate than likelihood-based
distance methods. Some recent studies also indicate that it may be vastly overconfident in
its assessment of whether it has gotten the right answer.
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Confidence Limits

As with any statistical approach, both parametric and non-parametric methods can be
applied to assess confidence in estimates of any underlying parameters in phylogenetic
analysis, including topology, branch lengths, and substitution models. The non-
parametric bootstrap is probably the most common means of assessing confidence in
details of the topology. In this procedure, new alignments are created by randomly
sampling sites in the alignment with replacement. The same procedure is then repeatedly
applied to the new alignments (often 100, but sometimes 1000 if computational time is
free and there is nothing better to do) to produce a set of “bootstrapped” topologies. Each
data partition (branches that split the taxa into the same subgroups) is then tallied up to
obtain the fraction of times that each branch is observed. While ideally these fractions
would translate directly into confidence estimates for individual branches, simulations
have revealed that there is a downward bias, such that a bootstrap value of 70% or more
is often considered significant support for a branch, and values of 90-95% are often
considered highly significant. The actual relationship between bootstrap values and
confidence limits probably varies with the amount and type of data, and with the structure
of the true underlying topology.

Bootstrap values are usually displayed attached to the optimal tree obtained with the
original data set. Since there are usually many partitions in the bootstrapped trees that are
not present in the original tree, not all partitions are displayed. Those that are not in the
original tree are unlikely to have high bootstrap values. Occasionally, if a particular node
is not supported by a certain number of bootstraps, that node will be collapsed, resulting
in a multifurcations in what is called a “consensus tree”. Although this procedure is
conservative (“I’m not going to show a partition unless I’m sure about it”), it throws out a
great deal of information about the structure of the tree and is probably overly
pessimistic. Penny and colleagues have experimented with alternatives, in particular
nearest neighbor bootstraps, which give a bootstrap percentage for a particular partition
plus the two other partitions that can be reached by nearest neighbor interchange.

In any model-based analysis, a more powerful means of obtaining confidence limits is
through parametric bootstrapping. Standard non-parametric bootstrapping is very general
and easy to implement, and works perfectly well in the limit of infinite data. Athough it
does not specify model parameters, it requires estimation of the frequency of each
pattern, which means there may be insufficient data to obtain good estimates of these
frequencies. Non-parametric bootstrapping takes the patterns in the data and resamples
from them, without making a statement (i.e, without building a model with parameters)
about how those patterns were generated. Parametric bootstrapping, in contrast, is based
on a model, in particular the model and set of parameters that has the greatest probability
of producing the data. Once the parameters are determined, data is re-simulated based on
those parameters, and relevant statistics are re-calculated. Through repeated simulations,
one can obtain distributions and confidence limits for both the statistics and the
underlying parameters.

In phylogenetic analyses, complete parametric bootstrapping is not generally feasible for
moderately large datasets, simply because the original maximum likelihood procedures
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are themselves computationally burdensome. For this reason, it is more common to run
parametric bootstraps without re-estimating the topology every time. It is also possible to
test specific topological questions, such as the probability that a particular group is
monophyletic.

Posterior Probability

Recently, posterior probability, or Bayesian, analysis has been making a large impact on
phylogenetic analysis. The core of the posterior probability approach is to consider the
entire distribution of probability space, rather than simply the maximum, as with ML.
Bayesian proponents tend to claim that the center of Bayesian analysis is the “priors”, the
probability of the model parameters before looking at the data. Likelihood proponents
argue that prior support is perfectly acceptable so long as it is obtained from general data
and is not “made up”. Both arguments have philosophical bases and are hotly contested,
and it is not worth going into great detail here. Rather, we will focus on the practical
aspects of posterior probability analysis in relation to phylogenetics.

The central calculation in posterior probability analysis is the same as with ML, which is
calculating the probability of the observed sequence data, D, (with the alignment usually
treated as though it were observed) given a specific set of model parameters, θ. The
posterior probability of any specific set of parameter values can be determined by
calculating

  
P( | D) =

P(D | )P( )

P(D | )P( )
=−∞

∞∑
. [8]

In the continuous case, the summation changes to an integral, and the probability of any
range of parameter values can be determined by summing probability over that range.
Ignoring the issue of the prior, the major computational difference is then that in ML one
must perform some sort of hill-climbing algorithm to identify the maximum, whereas in
posterior analysis one must have a means of efficiently moving through the entire
posterior probability space (or at least the portion of that space with high probability
density).

Posterior probability space is generally explored using the Metropolis-Hastings algorithm
or derivatives thereof, although some use has been made of importance sampling
algorithms, and Gibbs sampling has been used for alignments. The basics of Metropolis-
Hastings exploration is a Markov chain consisting of a proposal mechanism for moving
from point x to point y, and an acceptance mechanism, by which it is decided to move to
point y or stay at point x. Every point must be reachable by the proposal distribution, q,
and the proposals must be symmetric, such that q(y|x)=q(x|y). The acceptance mechanism
is to move to y if it has greater posterior probability, or if not, to move to y with
probability P(y)/P(x). With importance sampling, a means of generating independent
points is used that is hopefully as close to the posterior probability distrubution as
possible. Each point generated is then weighted by the ratio of the posterior probability to
the proposal probability. With both methods, the set of points sampled is a sample from
the posterior probability distribution, and therefore the probability of any parameter, or
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range of parameters, can be found by simply counting up the proportion of points that fall
within the appropriate range.

Credible intervals, the Bayesian equivalent of confidence limits, are extremely intuitive
as the regions of parameter space containing, for example, 95% of the probability space
surrounding the mean parameter values. The points from an importance sampler are
independent, but for a Markov chain they are autocorrelated, meaning that the variance of
estimates cannot be calculated from the number of points sampled. For this reason, chains
are often subsampled every 100 or 1000 points or so, but still, an accurate estimate of the
variance can only be obtained by running multiple chains. Another important factor is
that the chains must be at equilibrium before sampling begins. It is often difficult and
somewhat of an art to determine when equilibrium is reached, the prior points
representing “burn-in” that must be thrown out.

Philosophical considerations aside, there are three pragmatic reasons that posterior
probability analysis is becoming more popular in phylogenetic research. First, ML
requires optimization of each parameter, meaning that computational time is
multiplicative with the complexity of (the number of parameters in) the model. With
Metropolis and related approaches to posterior analysis, multiple parameters may be
varied simultaneously, meaning that computational costs are not necessarily
multiplicative. Since phylogenetic models are getting quite complex, and topology space
alone has far too many parameters to deal with exhaustively, this is an important
consideration. Second, since all parameters must be optimized simultaneously in ML, it is
easy to have over-parameterization of the model and lose power for analyzing a few
parameters that are of greatest interest. In posterior analysis, it is possible to integrate out
parameters that are not of interest, thereby increasing the power for a given data set
(although the effective reduction in parameters is uncertain). Third, the credible intervals
are not only intuitive, but they can be calculated directly from the sample of the posterior
probability space. This means that there is no need to do parametric or non-parametric
bootstrapping, which saves a huge amount of time.

Adaptation, Coevolution, Functional Divergence, and
Ancestral Reconstruction
Some of the most interesting uses of phylogenetic analysis have to do with understanding
deviations from the simple models. With neutral evolution, one expects that evolution
will proceed in a straightforward manner, but with selection and adaptation, there may be
bursts of change, coevolutionary interactions, and dramatic changes in the evolutionary
process. In addition, one may want to make inferences about the ancestral condition in
order to infer the direction of evolution and correlate evolutionary changes to
environmental change. The pursuit of such questions has a long history, including
methods that ignore phylogenetic relationships and methods that do not have an explicit
model. Recently, many of these questions have been addressed in a phylogenetic
likelihood context, and the accuracy and power of is often dramatically improved.

Adaptation has been successfully detected by comparing rates of substitution between
ostensibly neutral sites (usually synonymous changes at 3rd codon positions) and amino
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acid substitutions. This was first done for entire proteins or regions of proteins, which
detects what might be called “diversifying selection”, in which selective forces are
constantly in favor of more change at functionally important sites. This sort of selection
is observed in molecular “cat and mouse” situations where interacting molecules are
chasing each other in the evolutionary process. Examples are pathogen proteins that
interact with host defense systems, and molecules involved in interactions between the
sexes. Brief bouts of selection have also been detected on particular branches or lineages,
which can be considered “adaptive bursts”, in response to some (often unknown) external
or internal environmental change.

Coevolution, sometimes called covariation or correlated mutation (correlated
substitution) is the correlation of evolutionary change between sites, whether within or
between proteins. This can be generally defined as a situation where changes at one site
change the probability of substitution at another site. Coevolutionary analysis has been
shown to be particularly susceptible to detecting spurious correlations that arise from
phylogenetic relationships rather than coevolutionary relationships when phylogeny is
not accounted for. Another problem with coevolution is that in evaluating evidence for
interactions between sites, information is limited to those sites under consideration,
meaning that large phylogenies are needed in order to have enough data to rise above
random fluctuations. For the same reason, it can also be difficult to justify complex
models, which may be vastly overparameterized compared to the amount of data at a pair
of sites. Approaches to coevolutionary analysis have included use of physicochemical
properties to orient amino acid residues, frequency-based analyses such as use of
information measures, and analysis of correlation in timing of substitutions by
reconstructing where changes occurred on the phylogenetic tree. The relevant likelihood
approach (used in Pollock’s LnLCorr program) is to compare the likelihood of a model of
independent evolution between sites with the likelihood of a model with coevolutionary
interactions between sites. Because the amount of information at any one site is low, it is
necessary to perform a parametric bootstrap rather than relying on χ2 approximations in
order to get confidence intervals. Pairwise coevolutionary interactions tend to be weak,
but have been detected most clearly between residues that are adjacent in alpha helices.
Other interesting general interactions involve maintenance of charge distribution on the
surface of proteins, and weak positive correlations in size spread over broad regions of
the protein interior.

Finally, it is very plausible that when protein function changes, which may happen after
gene duplication, so too should the evolutionary process at some sites in a protein. Gu has
built likelihood models for detecting such “functional divergence” by evaluating whether
the rate of evolution at individual sites changes dramatically between homologous but
functionally divergent protein pairs. Some of the rate divergence detected with this
method may be reasonably explained by neutral change, or by divergence of structural
features unrelated to functional shifts. Nevertheless, this is an extremely promising
approach to understanding functional change and innovation in proteins.
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Available Software

Phylip: An old standby from the founding father of phylogenetic analysis using
likelihood. Set up as a package of stand-alone programs, Phylip includes distance
calculation and basic reconstruction methods using distances, a large variety of
parsimony methods, and of course, maximum likelihood. Also includes programs for
bootstrapping (another Felsenstein thing) and building consensus trees, and for displaying
trees. A new version, 3.6, has just come out. For a long time Phylip was only available as
a UNIX program, and it retains that UNIX command-line feel. Relies on Adachi’s
MOLPHY program for likelihood-based analysis of proteins.

PAUP*: Perhaps the most user-friendly and popular of the academic programs, although
the current version has been in beta testing for almost a decade now and the manual is
incomplete. PAUP* is sold for a nominal fee. Swofford first wrote PAUP as a program
devoted entirely to parsimony when parsimony was king, and he has been moving
steadily to include more and more statistical methods, i.e., distances and maximum
likelihood. PAUP* is flexible, fast, and essential for phylogenetic analysis, but probably
would have done better to abandon the parsimony methods to a separate program, since it
can be difficult to track how parameters and flags are set, and which of them apply to
which analyses. Still, PAUP* is a highly usable program and very good for beginners to
learn the possibilities of phylogenetic inference. Also, despite its user-friendly interface,
PAUP* is available on UNIX and can be automated for batch processing, making it
highly versatile for advanced analyses. New developments are often contained in hidden
commands that are only slowly released to the general user, so it is worth asking if a new
type of analysis is available. PAUP* has almost nothing designed for proteins.

PAML: Ziheng Yang has been the most productive researcher in recent years coming up
with new, more complicated, and biologically realistic models of DNA and protein
evolution. In particular, this includes gamma models of rate evolution, codon-based
models, ancestral reconstruction, and detection of adaptation. Every new analysis is
quickly incorporated into PAML, so it is usually on the cutting edge, and has techniques
that are not available in other programs, particularly for analysis of protein evolution.
PAML’s strength is in its models, and it is not built for speedy phylogenetic
reconstruction to the degree that PAUP* is, and as a UNIX-based program, its user
interface can be difficult for those who are not computer-savvy.

MrBayes and BAMBE: These two programs mark the onset of posterior probability, or
Bayesian, analysis into phylogenetics. BAMBE came first, but MrBayes is perhaps easier
to use. Although driven by a Unix-style command-line interface, MrBayes is based on the
same programming model as PAUP*, so many of the commands are directly transferable
and will be an easy jump for users of PAUP*. Includes all the usual Bayesian-style
analyses, and a wide variety of models for both DNA and protein evolution, and has
included more and more options at a rapid pace. Watch for updates; MrBayes will rise in
importance in the near future.

Other software: Many of the analyses mentioned here are available in other packages,
and many of the analyses are only available in specialty programs, or research programs
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that are extremely difficult to use. A list of many programs is available from
Felsenstein’s group at zoology.uwashington.edu. GCG is a commercial program that
contains most of the simpler analyses, and MEGA contains basic analytical distances,
although not maximum likelihood or least squares distances, which limits its utility.
HiPhy is an interesting likelihood package for programming. The Oxford Zoology group
has produced a variety of useful programs for Macintosh computers, and TreeView is a
useful viewing program, although it tends to be sensitive and buggy (our departmental
computer manager blames it for destroying the file system on his NT machines). BIONJ,
WEIGHBOR, LnLCorr, and k-class analysis are available as specialty programs from
their authors. There are also numerous packages focused on population genetics analyses.
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