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Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past
evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the
course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to
provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of
multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand
this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of
computationally simple ‘‘conditional pathway’’ methods that differed in the number of substitutions allowed per site
along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral
states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and
found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony
reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant
nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to
deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony,
ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian
set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations
have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased
nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their
speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of
functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for
conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition
variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than
were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious
bias and inaccuracies in functional predictions.

Introduction

Reconstructions of ancestral nucleotide and amino acid
sequences are useful in many forms of comparative biology
(Karlin, Mocarski, and Schachtel 1994; Maddison and
Maddison 2000; Zhang et al. 2003). Accurate reconstruc-
tion of ancestral sequences enables us to infer evolutionary
pathways; study adaptation, behavioral changes, and
functional divergences; and correlate site-specific changes
with geography or known paleontological events (Bleiweiss
1998; Giannasi, Thorpe, and Malhotra 2000; Beardsley,
Yen, and Olmstead 2003). Reconstructions are also at the
core of experimental paleo-molecular biochemistry, a pur-
suit in which sequences of extant taxa are used to predict and
resurrect the sequences and functions of ancestral macro-
molecules (Pauling and Zuckerkandl 1963; Krawczak,
Wacey, and Cooper 1996; Benner 2002; Zhang and
Rosenberg 2002; Gaucher et al. 2003).

Parsimony and maximum-likelihood (ML) methods
of reconstruction have been used extensively in various
ancestral sequence analyses (Stewart, Schilling, and
Wilson 1987; Malcolm et al. 1990; Messier and Stewart
1997; Hassanin and Douzery 1999; Hibbett and Binder

2002; Richard, Lombard, and Dutrillaux 2003; Soltis et al.
2003) and can sometimes be reliable. For example,
ancestral reconstructions using parsimony were 98%
accurate in predicting ancestral sequences from experi-
mental phylogenies created by serial propagation of
bacteriophage T7 in the presence of a mutagen (Hillis et
al. 1992; Bull et al. 1993). Ancestral reconstruction of
sequences using parsimony is, however, known to be
biased for skewed base compositions (Collins, Wimberger,
and Naylor 1994; Zhang and Nei 1997; Eyre-Walker 1998;
Sanderson et al. 2000). The bias in parsimony-recon-
structed ancestral sequences deterministically decreases
the frequency of the rare base and increases that of the
most common base.

Although it has been generally assumed that ML
sequence reconstruction does not suffer from the same
problems (Collins, Wimberger, and Naylor 1994; Zhang
and Nei 1997; Eyre-Walker 1998; Sanderson et al. 2000),
both ML and parsimony can sometimes fail when
reconstructing quantitative traits (Schluter et al. 1997;
Hormiga, Scharff, and Coddington 2000; Oakley and
Cunningham 2000; Webster and Purvis 2002). ML
reconstructions of continuous ancestral traits can be
particularly uncertain for traits with frequent changes
(Schluter et al. 1997; Cunningham, Omland, and Oakley
1998), but continuous trait reconstruction is arguably
hindered much more by modeling inadequacies than by
problems with inference techniques. Even with discrete
traits, however, ML reconstruction has limitations; in
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a recent ‘‘experimental phylogenetics’’ analysis using
PCR-generated mutations, comparisons between known
ancestral sequences and those reconstructed using ML
showed that while most ancestral sequences were
accurately reconstructed, errors increased with the depth
of the sequence in the tree (Sanson et al. 2002). Although
the models used are still imperfect (Yang, Kumar, and
Nei 1995; Koshi and Goldstein 1996), and reconstruction
is clearly not error-free, ML is more commonly used
in ancestral reconstruction, mostly due to the large biases
of parsimony.

For phylogenetic analyses, ML is generally preferred
over parsimony and distance methods due to its greater
accuracy and incorporation of more realistic models of evo-
lution (Huelsenbeck 1995; Yang 1996a, 1996b; Huelsen-
beck and Rannala 1997; Pollock and Bruno 2000). This is
especially true for highly divergent sequences, such as
vertebrate mtDNAs. Posterior probability (Bayesian)
methods using Markov chain Monte Carlo (MCMC)
simulations have, however, recently gained considerable
attention in phylogenetic analysis, because they are com-
putationally more efficient and faster than ML methods,
particularly for analyzing more complex evolutionary
models and larger data sets (Huelsenbeck and Ronquist
2001; Huelsenbeck et al. 2001; Bollback 2002; Douady
et al. 2003). They also allow nuisance parameter inte-
gration, generation of credibility intervals, and analysis of
parameter distributions, rather than only the most likely
parameters (Antezana 2003). Posterior probability methods
are therefore a potentially useful alternative to parsimony
and ML methods for reconstructing ancestral sequences
(Koshi and Goldstein 1996; Nielsen 2002; Huelsenbeck,
Nielsen, and Bollback 2003).

Statistical biases may exist even in Bayesian
methods, and the behavior of Bayesian methods in
ancestral sequence reconstruction (Koshi and Goldstein
1996) is not presently well known. We have implemented
a modification of Nielsen’s Bayesian approach (Nielsen
2002; Nielsen and Huelsenbeck 2002) whereby internal
states are mapped onto the phylogeny as augmented data
during the course of the Markov chain, and we use this
method here to address the differences between the
Bayesian and ML approaches to ancestral reconstruction.
We consider a simplification of this approach in which
internal states are mapped only to internal nodes (not
within branches) and the number of substitutions between
nodes is limited to one or two per branch per site. We call
this a ‘‘conditional pathway’’ approach, because likelihood
calculations are conditional on a reduced or restricted set
of possible substitution paths. Although this simplification
is unlikely to be formally correct (i.e., more than two
substitutions will almost certainly occasionally occur at
a single site on a single branch during the course of
evolution), it is likely to be a good approximation under
many circumstances. It may not affect results dramatically
in any case, because the probability of substitution
between any two states with only two substitutions
separating them may not be much different than the
probability given many more intervening substitutions. For
comparison, we also implement an extremely simple
approach that is independent of branch length.

Although Bayesian methodologies are relatively
efficient in phylogenetics, they can still become slow
when the complexity of the model increases (Huelsenbeck
and Ronquist 2001), so considering this aspect of com-
putational limitations is important. The potential benefits
of our implementation include increased computational
speed and a dramatic increase in the feasibility of incorpo-
rating more complex models of evolution than are currently
feasible, particularly those in which instantaneous rate
matrices vary among gene positions, over time, or with
changing sequence context. Computational costs for
standard matrix exponentiation methods will increase
linearly with the number of matrices and will increase
with the square of the number of states in the matrices,
whereas the methods described here will not. In our
experience, it is also much easier to program new models
with the methods described here, and there is no need to
incorporate complicated memorization schemes to save
computational time. For example, in work to be described
elsewhere we implemented a model in which the in-
stantaneous rate matrices were different at every site over
the entire length of the mitochondrial genome (N. M.
Krishnan et al., in preparation). Our purpose here,
however, is not to demonstrate the implementation of
such complex models, but to demonstrate the accuracy of
our conditional pathway implementation by comparing it
to full likelihood calculations as implemented by standard
programs. The series of computationally simple condi-
tional pathway methods that we implemented also result in
a series of calculations intermediate between those of
parsimony and full likelihood calculations, and this helps
to clarify the reasons and conditions under which bias in
ancestral reconstruction may occur.

We tested our program by analyzing its ability to infer
ancestral sequence distributions from primate mtDNA
sequences and from simulated data. Parsimony was
recently used to study evolutionary changes of nucleotide
composition in primate mtDNA genomes (Schmitz, Ohme,
and Zischler 2002), and it was suggested that nucleotide
frequencies had changed from their ancestral states. We
performed preliminary analysis with ML in addition to
parsimony that supported this result, but the analysis also
suggested that nucleotide frequencies had changed many
times along various primate lineages, always in the same
direction. We present evidence that these results may have
been strongly influenced by bias in these ancestral
sequence reconstruction methods. In an analysis of the
cytochrome b (Cyt-b) and cytochrome oxidase I (COI)
gene sequences from selected primates, we find that
frequencies estimated from the posterior distribution of our
conditional pathway methods are dramatically more
similar to extant sequences than frequencies estimated
using either parsimony or ML. Surprisingly, ML recon-
structions are sometimes less similar to extant sequences
than parsimony reconstructions. We simulated primate
mtDNA evolution under plausible conditions of stationary
and changing mutation processes and found that consid-
ering the entire posterior distribution produced more
accurate reconstructions, even with methods involving
very simple calculations; the simplifying assumption of
one or two substitutions per site per branch introduces very
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little bias. While there was little difference between the
ML and Bayesian approaches to estimating parameters of
the substitution model, the ML approach of estimating
a specific ancestral sequence was considerably worse than
the Bayesian approach of considering the entire posterior
frequency distribution. Using the predicted folding of
tRNAs into cloverleaf structures, we also considered the
strong possibility that bias in reconstructed sequences can
affect functional inferences, a potentially important
consideration for paleo-molecular biochemistry.

Materials and Methods
Genome Sequences and Phylogeny

Thirteen complete primate mitochondrial genomes
were available from GenBank when this study was
initiated: Cebus albifrons (NC_002763; Arnason et al.
2000), Gorilla gorilla (NC_001645; Horai et al. 1995);
Homo sapiens (NC_001807; Ingman et al. 2000);
Hylobates lar (NC_002082; Arnason, Gullberg, and Xu
1996); Lemur catta (NC_004025; Arnason et al. 2002);
Macaca sylvanus (NC_002764; Arnason et al. 2000);
Nycticebus coucang (NC_002765; Arnason et al. 2000);
Pan paniscus (NC_001644; Horai et al. 1995); Pan
troglodytes (NC_001643; Horai et al. 1995); Papio
hamadryas (NC_001992; Arnason, Gullberg, and Janke
1998); Pongo pygmaeus pygmaeus (NC_001646; Horai et
al. 1995); Pongo pygmaeus abelii (NC_002083; Xu and
Arnason 1996); and Tarsius bancanus (NC_002811;
Schmitz, Ohme, and Zischler 2002). Three other primate
genomes, Cercopithecus aethiops, Colobus guereza, and
Trachypithecus obscurus came from colleagues (R. L.
Raaum et al., in preparation), and two nonprimate outgroups
from GenBank, Tupaia belangeri (NC_002521; Schmitz,
Ohme, and Zischler 2000) and Cynocephalus variegatus
(NC_004031; Arnason and Janke 2002), were also used.
Alignments of all tRNAs, rRNAs, and protein-coding
genes were created using ClustalW (Thompson, Higgins,
and Gibson 1994), concatenated using in-house PERL
scripts, and a neighbor-joining tree was determined with
the BioNJ algorithm using ML distances based on the
general time reversible (GTR) model in PAUP* 4.0
(Swofford 2000). This phylogeny conforms to most
expectations for primate phylogeny (Goodman et al.
1998), with the exception of the placements of Tupaia
and Tarsius (Schmitz, Ohme, and Zischler 2000). Because
this tree has a greater likelihood than the ‘‘true’’ primate
species tree according to both DNA and amino acid
complete mitochondrial data, it was deemed approximately
correct and thus used in all further analyses presented here.
Optimization of branch lengths on this topology under the
ML criterion in PAUP* (using the lscores command) did
not produce substantially different branch lengths or
ancestral reconstructions. Questions regarding the reasons
for topological inaccuracies of mtDNA-based phylogenies
are complex, involving gradients of different mutation
types along the genome (Faith and Pollock 2003) and will
be dealt with in detail for primates in a subsequent manu-
script. Ancestral sequence reconstructions were carried out
using the Cyt-b and COI alignments. These genes were

chosen for our analysis because they are positioned at the
two extremes of a linear G/A gradient on the heavy strand
of the mtDNA genome, which increases with the time spent
single-stranded during replication (Faith and Pollock
2003). They therefore have the most distinctly different
nucleotide frequencies possible in this data set.

Likelihood Calculations

Classical phylogenetic likelihood methods integrate
over all possible ancestral states and all possible branch-
specific substitution histories, which requires matrix
multiplications and decompositions into Eigenvalues and
Eigenvectors. We avoid this here by augmenting the
sequence data with mapped ancestral states and calculating
probabilities of occurrences of specific events, which
simplifies calculations and avoids the matrix multiplication
calculations along each branch required by matrix
exponentiation methods. States at internal nodes are
treated as hyperparameters and updated over the course
of the Markov chain. The probability of a substitution
event occurring at time t and not before is given (Rice
1995) as

PðE j tÞ ¼ ke�kt; ð1Þ

where k is the rate at which the event (or set of events)
occurs, and the probability that no substitution events
occur until t is e2kt. If we consider two nodes in a tree with
states x and z and separated by a branch of length tb, and
we assume that a single event occurred at time t1, with no
events occurring over time t2¼ tb 2 t1, then the probability
of this substitution is given as:

PðE j t1; t2; x; zÞ ¼ kxze
��x t1e��zt2 ; ð2Þ

where kxz is the substitution rate from state x to state z,
based on the current values of the model parameters and
�j ¼

X
k 6¼j

kjk.

Because there is almost no information concerning
the timing of the event, we integrate this probability over
all possible times such that

PðE j tb; x; zÞ ¼ kxz

Z tb

0

e��x t1e��zðtb�t1Þ@t1

¼ kxz

e��x tb � e��ztb

�z � �x

: ð3Þ

This calculation will be referred to as the B1 method,
because there is one substitution per branch. A similar
equation was recently independently derived by D.
Robinson and colleagues (J. Thorne, personal communi-
cation) and a method based on equation (2) was used in
a different scenario in which the assumption of in-
dependence among sites was relaxed and all substitution
events along branches were mapped (Robinson et al.
2003).

If we assume that two substitutions occurred between
the nodes rather than one, such that state x changes to state
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y changes to state z, then similar calculations and
integrations can be made to obtain:

PEðE j tb; x; y; zÞ
¼ �kxykyze

�tbð�xþ�yþ�zÞ*�
ð�y � �xÞetbð�yþ�zÞ þ ð�y � �zÞe2tb�y

þ ð�x þ �z � 2�yÞetbð�yþ�xÞ
�.

� ð�y � �xÞð�y � �zÞð�x þ �z � 2�yÞ: ð4Þ
This will be referred to as the B2 method, because there
are up to two substitutions per site per branch. The above
calculation was summed over all possible states of y to
obtain P(E j tb,x,z) for the B2 method. Further calculations
could be made for more than two substitutions between
nodes in some cases (J. Thorne, personal communication),
but the calculations become excessive, as suggested by the
difference in complexity between equations (3) and (4),
and there is no simple formula available for the general
case. Alternatively, extra nodes could be inserted between
branch points for particularly long branches, where the
states at these extra nodes would be treated as a part of the
augmented data; this is simpler to program, if not faster to
calculate, than a theoretical ‘‘B4’’ method. We do not
consider these alternatives here, but rather focus on
whether these simplified calculations can be used effec-
tively in some cases to speed computation without great
loss in accuracy. In addition, we consider a method (BL–)
in which the probability of substitution is independent of
branch length, such that

PðE j tb; x; zÞ ¼ kxz: ð5Þ
The cumulative probability for all events, D, along
a branch, b, is

Pðb j DÞ ¼
Y
x

Y
z

Cb
xz

X
y

PðE j tb; x; y; zÞ; ð6Þ

where Cb
xz is the counted number of changes from state x to

state z along branch b over the entire augmented data set.
For B2, during the summation over internal states, y, if
x¼ y or y¼ z, then equation (3) is used; if, however, x¼
y ¼ z, then the calculation made is the probability that
no substitutions occurred. For B1 and BL–, the summa-
tion over y is irrelevant, and for BL–, tb is ignored.
Calculations are generally made as sums of log likelihoods
of each internal event for computational accuracy, and the
log likelihood over the entire tree is the sum of log
likelihoods for each branch in the tree.

Running the Markov Chain

Markov chains were run using Monte Carlo techni-
ques that included a mixture of the Metropolis Hastings
algorithm (Metropolis et al. 1953; Hastings 1970) and
Gibbs sampling (Geman and Geman 1984; Gelfand and
Smith 1990). Parameters and augmented data states were
initialized in a sequence of approximations similar to the
steps in an expectation maximization (EM) algorithm
(Little and Rubin 1983; Meng and Rubin 1991). A first set
of states at internal nodes was obtained by moving from

the tips of the tree upwards, randomly choosing a state for
each internal node from the states of the two immediate
descendant nodes. The model parameters were then
initialized by summing substitutions over the entire tree
based on the initial augmented internal states and
calculating the frequencies of these substitutions as
proportions of the counts for each nucleotide,

k0
xz ¼ C0

xz=C
0
x ; ð7Þ

where Cx¼
P

yCxy. For the simplest method (eq. 5), these
initial estimates are close to the final ML value under
a nonreversible model. For most of our calculations we
utilized a general time reversible (GTR) substitution model
in which the rates are constrained such that kxz ¼ axzpz,
where the rate parameters axz ¼ azx, and px is the
equilibrium frequency of state x. In this case, the total
forward and backward substitutions are averaged to obtain
initial estimates of the rate parameters,

a0
xz ¼ ðk0

xz=pz þ k0
zx=pxÞ=2; ð8Þ

where the pi values are estimated independently as

p0
i ¼ C0

i /
X
y

C0
y .

After initialization of the model parameters and
augmented states, we ran a Markov chain in which either
the internal states or rate parameters were updated with equal
probability at each step. The full rate matrix was updated
using the Metropolis-Hastings algorithm, in which each set
of parameters in the chain, ht at step, depended only on the
parameters in the previous step, ht21. The parameter values
for a new step were proposed based on a proposal density,
q(h9 j ht21), and this proposal was accepted or rejected based
on the Metropolis-Hastings acceptance function,

ht ¼
h9 if ða � 1 or a . rand ð0; 1ÞÞ
ht�1 otherwise

� �
; ð9Þ

where

a ¼ LðD j h9ÞPðh9Þqðht�1 j h9Þ
LðD j ht�1ÞPðht�1Þqðh9 j ht�1Þ

: ð10Þ

In the Markov chains run for this study, the parameter
priors,P(h), were uniform such thatP(h9)¼P(ht21) for all h,
and the proposals were symmetric such that q(h9 j ht 2 1)¼
q(ht 2 1 j h9) for all h; the acceptance probability therefore
reduced to the likelihood ratio. The chains works best if
the proposal densities match the shape of the target
distribution, P(x), but this density is unknown. Here, the
proposed changes for the rate parameters followed
a normal distribution with variance determined by the
acceptance probabilities, and they were thus symmetric
and not biased towards any parameter values. Proposals
of values out of range (e.g., rates less than zero) were
reflected about the range boundary. If proposal steps are
too small, the chain will mix slowly, i.e., it will move
around the space slowly and converge slowly to P(x). If
the proposal steps are too large the acceptance rate will be
low because the proposals are likely to land in regions of
much lower probability density. Since the appropriate size
of the proposal step depends on the data set being used,
short simulations with 50 different window range values
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were run for 200 iterations prior to starting each chain to
determine appropriate parameter proposal window sizes.
The window sizes for proposals were fixed at values for
which 60%–80% of the proposals from the initial point
were accepted. A full matrix update was proposed for the
rate matrix in an MCMC generation and accepted
according to the Metropolis-Hastings criterion.

States at internal nodes were updated using a Gibbs
sampler (Geman and Geman 1984; Gelfand and Smith
1990; Wang, Rutledge, and Gianola 1994; Liu, Neuwald,
and Lawrence 1995; Firat, Theobald, and Thompson
1997). An initial internal node was picked randomly and
a new state was calculated from the probability density of
substituting to or from the states at the three surrounding
nodes. The remaining internal nodes were then updated in
a similar fashion, moving outward from the initially
chosen node. Because each new state was sampled from
the conditional posterior density, the randomly sampled
state was always accepted.

Chain Convergence Diagnostics

After initialization, the Markov chain was run for 2,000
iterations until equilibrium, at which point the initial values
no longer affect the current values of the model parameters.
These ‘‘burn-in’’ samples prior to chain convergence were
discarded and excluded from analyses. Chain convergence
was confirmed for likelihood and all substitution parame-
ters. To determine whether the chains indeed converged to
a stationary distribution, we ran three parallel chains with
over-dispersed starting values for the transition matrix.
Convergence was confirmed (Gelman et al. 1992; Gelman
and Rubin 1996) when the within-chain variance (WT) was
equal to the estimated asymptotic variance (r̂2

T). If T is the
number of points generated in a chain and N is the total
number of chains, then the among-chain variance is

BT ¼ 1

N

XN
k¼1

ð�dk � �dÞ2 ð11Þ

and the within-chain variance is

WT ¼ 1

N

XN
k¼1

s2
k ¼

1

N

XN
k¼1

1

T

XT
t¼1

ðdðtÞk � �dkÞ2
; ð12Þ

where

�dk ¼
1

T

XT
t¼1

dðtÞk and �d ¼ 1

N

XN
k¼1

�dk; ð13Þ

and the estimated asymptotic variance is

r̂2
T ¼ T � 1

T
WT

� �
þ BT

T

� �
: ð14Þ

For BL–, sampling continued for 25,000 generations,
while for B1 and B2 it continued for 50,000 generations.
Nucleotide frequencies and nucleotide ratios were calcu-
lated at each internal node and averaged across all sampled
points. The effective sample size (NEff) was calculated as

NEff ¼ ðN � BÞ 1 � r1

1 þ r1

� �
; ð15Þ

where N is the total sample size, B is the size of the sample
removed for burn-in, and r1 is a lag one autocorrelation
function such that

r1 ¼
Pi,N

i¼B ðDi � lÞðDiþ1 � lÞPi�N
i¼B ðDi � lÞ2

; ð16Þ

where Di is the ith sampled data point and l is the sample
mean with burn-in excluded. To determine a sampling
frequency that represented a good tradeoff between
independence of points and the length of the chain, a test
chain (using B2 on the COI data) was sampled at different
frequencies between 1 and 10. For sampling every four
generations, the proportion of independent data points was
;0.92 (vs. ;0.95 for sampling every tenth generation) but
the time required to collect these points was less than half
that for sampling every tenth generation; we therefore
chose every fourth generation as a reasonable sampling
interval. Most of the results on convergence diagnostics
are presented as Supplementary Material online.

Parsimony, Maximum-Likelihood, and
Bayesian Estimation

To contrast results from the Markov chains and
methods described above with more familiar methods, we
performed parsimony and ML ancestral reconstructions
using PAUP* 4.0 (Swofford 2000). In addition to estimating
the frequencies for each site, we recorded the maximum-
likelihood value for the chains run under the BL–, B1, and
B2 approaches. Although we present primarily the ML
and parsimony results from PAUP* and the posterior
distribution estimates from our own program, there was not
a qualitative difference between the biases produced
from the ML estimate with our method or with PAUP*,
or between assuming either constant rates or gamma-
distributed rates in PAUP*. An important technical point
worth clarifying here is that bias from the optimization
methods is a result of choosing a particular nucleotide as
‘‘best,’’ as opposed to tracking the entire distribution. We
used the top choice for parsimony reconstruction pro-
duced by PAUP* without considering alternative equally-
parsimonious solutions; consideration of these alternatives
should not change the bias of parsimony because PAUP*
chooses randomly among equally-parsimonious solutions,
and hence when one looks across many sites one gets a fair
estimate of the performance of the method.

Functional Test

Primate mitochondrial tRNAs were aligned using
ClustalX (Thompson, Higgins, and Gibson 1994), and
tRNAscan-SE (www.genetics.wustl.edu/eddy/tRNAscan-
SE/) was used to obtain predicted secondary structures
(Lowe and Eddy 1997). Only perfectly aligned and
consistently paired sites were considered in our analyses,
meaning that sites in the alignment were discarded if they
included gaps, if they included loops in any of the
predicted secondary structures, or if they were paired with
different sites in predicted secondary structures from
different species. These alignment and pairing criteria
were necessary to avoid alignment ambiguity and to avoid
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changes in the base-pairing context, which our approach
cannot accommodate. Thus, out of about 22,000 aligned
sites, 13,803 sites did not have gaps and only 7,740 sites
were consistently paired in predicted secondary structures.
Of these, 3,360 were variable across the data set. The
alignments for six tRNAs (tRNA-Gln, tRNA-Glu, tRNA-
Ile, tRNA-Met, tRNA-Leu4, and tRNA-Pro) were used in
their entirety, whereas tRNA-Tyr aligned poorly and
contributed few sites. The base composition variability at
a site was measured with the Shannon index at that site
across the species in the study, S¼2

X
i

pi ln(pi), where pi

is the frequency of nucleotide i (A, C, G, or T) at that site.
The Shannon index was also used to estimate the
ambiguity of the posterior probability distribution for the
inferred nucleotide state at each internal node at each site.

Simulations of Constant and Variable Evolution

For the constant evolution simulations, evolution was
stationary along each branch on the primate phylogeny.
Hence, simulations were performed under the most likely
model for a gene by starting at the deepest node and
keeping the rate matrix and equilibrium frequencies
constant. Under the variable model of evolution, the
average of all inferred ancestral node frequencies was used
for all the internal branches, while the external branches
were simulated using the nearest tip frequencies. The ML
rate parameters were kept constant throughout. The
frequencies observed in the simulations were recorded
for each base and for each internal node (hbn), and
reconstructions (ĥbn) were made using parsimony, ML,
BL–, B1, and B2. Differences between the reconstructed
and simulated frequencies for each base (b) and for

each internal node (n) were used to estimate the bias
(ĥbn 2 hbn). The total bias in the frequency reconstruction
was summarized using the mean squared error (MSE):

MSE ¼
Xk
n¼1

X4

b¼1

ðĥbn � hbnÞ2

4k

 !
; ð17Þ

where k is the total number of internal nodes.

Results
Chain Convergence

For primate COI and Cyt-b alignments, burn-in was
achieved after 200 and 500 sampled generations, respec-
tively (see online Supplementary Material). Apparent con-
vergence can be seen by the lack of change in equilibrium
values, made clearer in the expanded windows (online
Supplementary Material and fig. 1), for which the noise is
greater than any directional trend in the data. Samples were
graphed for all 16 transition matrix parameters for
confirmation of convergence of each rate parameter (data
not shown), and posterior probability distributions were
calculated for each parameter (e.g., fig. 1). Chain diagnostics
confirmed that convergence had been reached, since differ-
ences among chains and estimated asymptotic variance were
generally less than 1% (see online Supplementary Material).
After excluding burn-in, the effective sample sizes were
24,111 for CO1 and 47,692 for Cyt-b.

Differences in Base Frequencies of Reconstructed
Ancestral Sequences

Ancestral reconstructions by both parsimony and ML
had different base frequencies than the extant taxa (tips),

FIG. 1.—Posterior probability density distributions of the 16 substitution probabilities for Cyt-b. The example shown was calculated using the general
time reversible model and the B2 conditional pathway method. Substitution probabilities are shown on four different scales: (A) T!A, A!T, A!C, C!A,
G!A, and A!G; (B) T!C and C!T; (C) G!T, C!G, G!C, and T!G; and (D) C!C, T!T, A!A, and G!G. Because the model is reversible,
the substitution probabilities at any time point are equal to the rate parameter times the equilibrium frequency of the nucleotide being substituted to.
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particularly for the less frequent bases (tables 1 and 2;
values shown are for the heavy strand). For all codon
positions together, the use of a model with gamma-
distributed rates (gML) does not change the inferred
ancestral nucleotide frequencies very much, and in some
cases for COI it is slightly worse than the GTR without
gamma. In contrast, ancestral frequencies estimated by
tracking the entire posterior distribution using any of the
three intermediate conditional pathway methods were
generally more similar to extant sequence frequencies.
The ancestral state frequencies were most similar to the
extant frequencies when up to two substitutions per branch
were allowed, indicating that there is little or no bias for
this method (95% credible intervals for state frequencies
are always within 0.2% of the mean values). The low-
frequency base biases in parsimony and ML reconstruc-
tions were more noticeable at the more variable third
codon sites, which had more uneven frequency distribu-
tions (tables 1 and 2). The most extreme frequencies were
seen for C on the heavy strand at third codon positions,
where average COI frequencies at the tips were 0.065 and
Cyt-b frequencies were 0.037. Posterior ancestral frequen-
cy estimates with two substitutions per branch (B2) were
0.061 and 0.032, respectively, but for parsimony they were
0.028 and 0.011 and for ML they were 0.026 and 0.009,
substantially less than found in the genes from the extant
species. Reducing the allowable number of substitutions
per branch to one (B1) only marginally increased the
difference between the Bayesian estimates and tip
frequencies, but omitting the influence of branch lengths

entirely (BL–) produced estimates that had half the
apparent bias of the parsimony and ML estimates.

For COI, at third codon positions the average C/T
ratio was 0.177 for B2, 0.070 for parsimony, 0.067 for
ML, and 0.188 at the tips. Differences in C/T ratios were
similar for third codon positions in Cyt-b, whereas ML
was similar to parsimony (both were around 75% lower
than extant sequence frequencies). B2 and B1 were most
similar to the tips, off by only about 15%. It is worth
noting that under the GTR model, estimates from the
posterior with the simple conditional pathway method
were much more similar to estimates from the tips than
were the ML estimates, despite the fact that the likelihood
maxima in these runs were considerably lower (table 3).

Table 1
Nucleotide Frequencies and Frequency Ratios for Extant
Sequences (Tips) and Ancestral States in the COI Gene

All Positions
Methoda,b T C A G C/T G/A

Parsimony 0.285 0.152 0.274 0.289 0.535 1.06
MLa 0.282 0.151 0.274 0.293 0.537 1.07
gMLb 0.287 0.152 0.272 0.292 0.531 1.072
BL–a 0.278 0.152 0.275 0.295 0.546 1.07
B1a 0.277 0.155 0.284 0.283 0.56 0.996
B2a 0.269 0.164 0.29 0.277 0.608 0.963
Tips 0.268 0.165 0.292 0.275 0.615 0.941

Third Codon Positions
Methoda T C A G C/T G/A

Parsimony 0.397 0.028 0.195 0.380 0.070 2.10
ML 0.389 0.026 0.198 0.386 0.067 1.95
BL– 0.375 0.044 0.254 0.335 0.119 1.32
B1 0.352 0.061 0.231 0.355 0.174 1.54
B2 0.352 0.061 0.231 0.355 0.177 1.54
Tips 0.349 0.065 0.230 0.356 0.188 1.68

NOTE.—Internal node frequencies for all analyses shown were calculated using

reversible models. For tip sequences, the observed nucleotide frequencies are

shown. Bold numbers indicate the least biased method, and bold italics indicate the

most biased method for each nucleotide frequency and frequency ratio. Maximum-

likelihood (ML) estimates of ancestral node states were used for the general time

reversible model, whereas for the intermediate restricted likelihood methods BL–,

B1, and B2 the posterior distribution at each node was used.
a Internal node frequencies were calculated using reversible models assuming

constant rates among sites.
b Internal node frequencies were calculated using reversible models account-

ing for among-site rate variation using a gamma distribution.

Table 2
Nucleotide Frequencies and Frequency Ratios for Extant
Sequences (Tips) and Ancestral States in the Cyt-b Gene

All Positions
Methoda,b T C A G C/T G/A

Parsimonya 0.308 0.109 0.238 0.346 0.353 1.46
MLa 0.305 0.109 0.235 0.352 0.357 1.50
gMLb 0.306 0.109 0.235 0.351 0.355 1.496
BL–a 0.299 0.109 0.265 0.327 0.365 1.24
B1a 0.291 0.119 0.261 0.328 0.41 1.26
B2a 0.291 0.119 0.261 0.328 0.41 1.26
Tips 0.292 0.120 0.265 0.323 0.412 1.22

Third Codon Positions
Methoda T C A G C/T G/A

Parsimony 0.410 0.011 0.092 0.486 0.027 5.287
ML 0.409 0.009 0.082 0.500 0.021 6.109
BL– 0.392 0.021 0.158 0.437 0.053 2.759
B1 0.372 0.031 0.158 0.438 0.085 2.777
B2 0.372 0.032 0.158 0.438 0.085 2.777
Tips 0.375 0.037 0.155 0.434 0.098 2.803

NOTE.—Internal node frequencies for all analyses shown were calculated using

reversible models. For tip sequences, the observed nucleotide frequencies are

shown. Bold numbers indicate the least biased method, and bold italics indicate the

most biased method for each nucleotide frequency and frequency ratio. Maximum-

likelihood (ML) estimates of ancestral node states were used for the general time

reversible model, whereas for the intermediate restricted likelihood methods BL–,

B1, and B2 the posterior distribution at each node was used.
a Internal node frequencies were calculated using reversible models assuming

constant rates among sites.
b Internal node frequencies were calculated using reversible models account-

ing for among-site rate variation using a gamma distribution.

Table 3
Maximum-Likelihood Values for Different Methods with
the COI and Cyt-b Data Sets

Method/Model COI Cyt-b

MLa 213654.9 211203.3
BL–a 217364.4 215452.7
B1a 214845.0 212474.8
B2a 213934.8 211644.8
B2b 213452.2 210913.0

NOTE.—For BL–, B1, and B2 maxima were calculated from the optimum

encountered during Markov chain Monte Carlo runs. All differences are extremely

significant based on likelihood ratio tests.
a Calculated using a reversible model.
b Calculated using a nonreversible model.
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Presumably, the lower maxima were due to the limitation
on the number of substitutions per branch per site, but the
biases of ML in this situation were overwhelming.
Ignoring branch lengths (BL–) produced an even larger
drop in likelihood maxima, and differences from the tips
were about half as large as those of ML and parsimony. In
contrast, the likelihood maxima for the B2 approach using
a nonreversible model were significantly higher than for
the GTR model (table 3).

For the third codon position data, C/T frequency ratio
estimates using parsimony, ML, and B2 were mapped to
each node in the primate mitochondrial phylogeny (fig. 2).
There was considerable variation in frequency ratios
among both extant and ancestral nodes, but B2 ancestral
C/T ratios generally reflected the C/T ratios of nearby
nodes, whereas parsimony and ML frequencies deviated in
the direction of their apparent bias.

Simulation Results

For simulations with variable evolutionary rates (table
4), the average bias over all the ancestral nodes was
highest for the most frequent nucleotide (i.e., T): about
0.113 for ML, followed by parsimony at 0.09. For the least
frequent nucleotide (i.e., C), the frequency was lower by
0.14 for ML and 0.08 for parsimony. Biases for the
Bayesian methods were much lower, in the range of 0.008
to 0.012 for T and 20.02 to 20.03 for C. The mean
squared errors (MSEs; table 4) were lowest for B2
(0.0017) and highest for ML (0.0089). For constant rate
simulations, parsimony was more biased than ML for C
(the rarest nucleotide) and less biased for T (table 4). In
comparison, B2 deviated by less than half a percent for all
four nucleotides. The MSEs for the Bayesian methods
were about four times less for constant evolution than for

FIG. 2.—The primate phylogeny most compatible with the mitochondrial sequences, along with the ancestral state C/T frequency ratios of B2,
parsimony, and maximum likelihood (ML) mapped to the internal nodes, with observed ratios for the sequences at the tips. Data are shown as
percentages for the third codon positions of COI. This phylogeny was estimated using the neighbor-joining algorithm with the BioNJ option, with
distances calculated using ML and the general time reversible model. Further optimization of branch lengths with the PAUP* lscores option using ML
yielded different branch lengths but did not change reconstruction results. This phylogeny is probably slightly inaccurate in some details with respect to
species divergences (see Materials and Methods).
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variable evolution, but those for parsimony and ML were
about twice as big under constant evolution.

Comparison of Base Frequencies and Structure
Stabilities of Reconstructed tRNAs

To evaluate the effect of base frequency bias on
functional inferences, we reconstructed ancestral sequen-
ces for all primate mitochondrial tRNAs and examined the
compatibility of canonically paired sites in consistently
paired ancestral tRNA helices. A similar approach was
used to detect sequencing errors by showing that within-
species variants that decreased the stabilities of folded
sequences were often conserved among other species, and
thus were probably erroneous (Noor and Larkin 2000).
Here, the reconstructed variants of tRNAs that did not
retain canonical base pairing were assumed to be less
likely to fold into stable structures, and they were thus
inferred to be indicative of inaccurate reconstruction. We
evaluated the canonical base pairing for all methods but
present only the comparison of the ML method (calculated
using PAUP*; parsimony results were similar) with the
joint set of posterior probabilities for the B2 method (B1
was slightly worse, but similar to B2) both calculated
using the GTR model of evolution. Because the B2
method is only marginally biased (based on the simu-
lations), it can reasonably represent posterior estimates in
general. Moreover, the importance of the comparison is
between optimization methods and posterior estimation of
ancestral states, not between full or conditional pathways,
or between Bayesian and ML methods for parameter
estimation.

There were 3,360 consistently paired nucleotides at
15 internal nodes for variable sites, and Bayesian
integrations were more compatible with base pairing than

ML in 1,096 cases (32.6%). To understand which sites
were contributing to this effect, we classified reconstruc-
tions according to the base composition variability of the
site and how ambiguously the node and site combination
was reconstructed (table 5). The percentage of cases in
which the integrated posterior compatibility was better
than the ML reconstruction varied according to the extent
of base composition variability at a site and the ambiguity
of nucleotide reconstruction (table 5).

At low base composition variability, the integrated
posterior compatibility was slightly less than for ML, but
this trend was substantially reversed for sites with high
base composition variability. The effect of ambiguity also
varied, such that for sites with low variability ML did
relatively better with increasing node ambiguity, whereas
for sites with high variability ML did considerably worse
with increasing node ambiguity. These results make
a reasonable amount of sense, in that bias in ancestral
base frequencies away from low frequency nucleotides is
unlikely to influence results until a moderate level of
nucleotide variability is achieved. This was clear from the
average amount of improvement in degree of base pairing
complementarity with different levels of variability (fig. 3).
Although ML has a small advantage when variability is
low, the disadvantage of ML when variability is high can
be quite large.

The observed effects on functional inferences oc-
curred despite the fact that nucleotide frequencies in this
data set of structurally conserved helix pairs were only
moderately different than the tips for parsimony and even
more different for ML, whereas B2 integrated posterior
frequencies were barely different than the tips (table 6).
Some differences depended on which strand encodes the
tRNA, but the ordering of the methodologies was similar.

Discussion

Methods that reconstruct an optimal ancestor (parsi-
mony and ML) create large nucleotide frequency differ-
ences between reconstructed ancestral sequences and true
ancestral sequences, and they are therefore biased. Ance-
stral frequencies estimated by tracking the entire posterior
distribution do not show such differences and are much
less biased even when the evolutionary process varies over

Table 4
Biases for Each Nucleotide Averaged Over All the
Internal Nodes and Mean Squared Errors (MSEs) for
Various Methods for Simulations Performed with
Constant and Variable Models of Evolution

Method/Model Variable Evolutiona

C A T G MSE
Parsimony 20.080 20.006 0.090 20.005 0.005
ML 20.141 20.006 0.113 0.034 0.009
BL– 20.032 0.001 0.012 0.019 0.002
B1 20.030 0.001 0.008 0.015 0.001
B2 20.021 0.001 0.008 0.012 0.001

Constant Evolutionb

C A T G MSE
Parsimony 20.040 20.013 0.025 0.048 0.01
ML 20.024 20.013 0.043 0.035 0.02
BL– 20.015 0.004 0.004 0.004 0.0005
B1 20.011 0.004 0.002 0.003 0.0002
B2 20.005 0.003 0.003 0.001 0.0002

NOTE.—Maximum-likelihood (ML) estimates of ancestral node states were

used for the general time reversible model, whereas for the intermediate methods

BL–, B1, and B2 the posterior distribution at each node was used.
a The equilibrium frequencies varied along the tree during simulation, while

rate parameters were constant.
b Equilibrium frequencies and rate parameters were constant during entire

simulation.

Table 5
Proportion of Base Pairs for Which B2 Had Higher
Complementarity than Maximum Likelihood, Classified by
Nucleotide Reconstruction Ambiguity at Each Node and
Site and Base Composition Variability at Each Site

Ambiguity

Base Composition Variability at Site

Low Intermediate High

Low 0.39 (593/1540) 0.2 (199/992) 0.42 (44/106)
Intermediate 0.34 (17/50) 0.39 (5/13) 0.6 (3/5)
High 0.27 (96/360) 0.39 (93/240) 0.85 (46/54)

NOTE.—Low ambiguity nucleotide reconstructions have ambiguities less than

0.0001, high ambiguity reconstructions are greater than 0.01, and intermediate

reconstructions are inbetween. Low variability sites have variabilities less than 0.22,

high variability sites are greater than 0.708, and intermediate sites have variabilities

between these values.
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time. It was surprising that the bias in ML reconstruction
was usually similar or more extreme than in parsimony
reconstruction. The bulk of the bias seems to arise from the
use of optimization methods on these ambiguously
determined discrete hyperparameters (ancestral states),
rather than from whether the method or model is
statistically or theoretically well founded. Our results
do not indicate fundamental differences between the per-
formance of ML and Bayesian analyses for estimating
substitution model parameters but instead show that biases
occur when the most likely ancestor is chosen rather than
tracking the entire ancestral distribution. Thus, being
‘‘most likely is not enough’’ (Antezana 2003). When
incorporated into Bayesian analyses, features of parsi-
mony, including consideration of only one substitution per
branch per site and ignoring branch lengths, produce up to
half as much bias as seen in parsimony. It is possible that
parsimony’s inability to make anything but a random
choice between equally parsimonious reconstructions is
solely responsible for making it slightly less biased than
ML in our simulations.

Based on the predicted effect on tRNA structure, we
infer that the cumulative effects of ancestral reconstruction
biases can be important for functional inference. Compar-
isons between evolutionary models (GTR, ‘‘parsimony’’),
full or conditional pathway likelihood calculations (BL–,
B1, B2, ML), methods of inferring ancestors (Bayesian,
ML, parsimony), and programs (PAUP*, our programs)
help to clarify the nature of the bias and show that it is not
an artifact of any particular set of procedures. Differences
between tip sequences and ancestral reconstructions in
primates were consistent with expected biases produced
by ML and parsimony. Clearly, the idea that ancestral
primates evolved from radically different frequencies than
those seen today (Schmitz, Ohme, and Zischler 2002) is no
longer tenable, since Bayesian estimates of ancestral
frequencies are similar to extant sequences, and there is
only a small amount of bias in Bayesian reconstructions
whether the evolutionary process is variable or constant.
Nucleotide frequencies have clearly changed during
primate evolution (fig. 2), but not by nearly as much as
are inferred from ML and parsimony reconstructions, and

not in consistent and convergent directions along lineages
leading to tip sequences.

The effects of reconstruction bias are not limited to
errors in reconstructing nucleotide frequencies, but they
can lead to serious bias and inaccuracies in functional
predictions. All else being equal, one would normally
predict that integrating base-pairing potential over poste-
rior probabilities would yield considerably less comple-
mentarity than would optimization, since with canonical
base-pairing three out of four of the possible matches are
suboptimal. The observation that Bayesian estimates of
ancestral tRNA base pairs are better than ML estimates in
20%–40% of the cases is disturbing enough, but the fact
that at sites with highly variable base composition they can
be better in 85% of the cases has sobering implications for
reconstruction enthusiasts. We can make predictions that
more variable sites and more ambiguous reconstructions
are likely to suffer from the greatest amount of bias, but
it does not seem possible to accept reconstruction of
ancestral conditions without question, even when the
posterior probability of a particular reconstruction is high.
If the measured functional features are correlated with
particular nucleotides (e.g., RNA secondary structure
stability is likely correlated with GC content), then func-
tional interpretations will be biased. Any situation where
physicochemical properties must be matched or balanced,
as is the case with nucleotide pairing in RNA secondary
structure, will also be biased.

Although we analyzed nucleotide content here, there is
no reason to believe that the results cannot be generalized to
amino acid sequences, and therefore to reconstruction of
functional properties in ancestral proteins. For example,
Gaucher et al. (2003) recently concluded not only that the
common ancestor of all elongation factors of the bacterial
Tu family proteins (Ef-Tu) was thermophilic rather than
mesophilic, but also, surprisingly, that the common ancestor
of all mesophiles was thermophilic, too. It is possible that
mesophiles were derived from thermophiles, but if the last
common ancestor of mesophiles was thermophilic, meso-
phily must have arisen in parallel at least twice among the

Table 6
Average Nucleotide Frequencies at Tips and Internal
Nodes for tRNAs Coded on the Heavy Strand (HS) and
Light Strand (LS)

Method/Model tRNA T C G A

Parsimony HS 0.247 0.272 0.125 0.36
LS 0.374 0.153 0.221 0.287

ML HS 0.250 0.262 0.139 0.349
LS 0.361 0.148 0.211 0.280

BL– HS 0.254 0.259 0.138 0.349
LS 0.368 0.154 0.240 0.273

B2 HS 0.255 0.258 0.146 0.341
LS 0.355 0.154 0.211 0.280

Tips HS 0.255 0.246 0.147 0.352
LS 0.356 0.156 0.211 0.277

NOTE.—Internal node frequencies for all analyses were calculated using

reversible models. For tip primate sequences, the observed frequency is shown.

Maximum-likelihood (ML) estimates of ancestral node states were used for the

general time reversible model, whereas for the intermediate methods BL–, B1, and

B2 the posterior distribution at each node was used.

FIG. 3.—Differences between B2 and ML (B2-ML) in tRNA base-
pairing compatibility of predicted ancestral sequences (� complemen-
tarity) as a function of the nucleotide variability observed at a site. Most
data points are averages of all 15 internal nodes at a single site, but we
averaged over internal nodes at multiple sites when several sites had the
same base composition variability, as noted by a label next to the point
indicating the number of sites contributing to that point. Filled circles
indicate significant differences from zero (P , 0.05, two-tailed t-test).
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descendents of this ancestor, and all thermophilic descend-
ents must have gone extinct (or, at least, not have been
sampled by Gaucher et al. [2003]).

Although great care was taken in the study by
Gaucher et al. (2003) to consider alternative reconstruc-
tions at ambiguous nodes, our results strongly imply that
extremely biased reconstructions can appear certain pre-
cisely because of the bias and that effects of bias may be
cumulative. If thermostability is correlated with whichever
amino acids are favored in a biased reconstruction, then
the inference that the ancestral mesophile was thermophilic
(and thus the inference of multiple parallel derivations of
mesophily) would be false. If this is the case, consolation
may be found in the possibility that reconstruction of
ancestors may then be a profitable means to produce
thermotolerant proteins from relatively less stable de-
scendants. An obvious means to alleviate some (but not
all) of these considerations in future studies would be to
take care to maintain amino acid frequencies for all classes
or conservation levels within the protein. This will reduce
frequency bias, but problems with incorrect functional
inference unfortunately may still remain due to interactions
among sites (e.g., Pollock, Taylor, and Goldman 1999).

Our results also provide an interesting comparison
concerning the effects of different assumptions on likeli-
hood maxima and on reconstruction biases. Our simplest
approach, BL–, was similar to parsimony in that branch
lengths were ignored, although incorporation of variation
of rates among substitution types provided more flexibility
than the standard parsimony algorithm. For both protein-
coding genes, the likelihood maxima for this method were
around 4,000 log likelihood units worse than the maxima
for the methods with branch lengths (table 2), providing
strong evidence to reject the hypothesis that branch lengths
do not matter.

Allowing two substitutions per branch per site rather
than only one improved the log likelihood maxima by
about 800–900 units, and allowing an infinite number of
substitutions per branch improved the maxima by another
300–400 units. In many ways this is not surprising,
because there is no theoretical justification for limiting the
number of substitutions per branch, but it is interesting to
note that incorporating a nonreversible model of evolution
while limiting the substitutions to two per site per branch
results in likelihood maxima that are 200 units better than
the maxima for reversible models with an infinite number
of substitutions allowed. The assumption of a reversible
model is usually made for computational convenience,
rather than because of any compelling theoretical justifi-
cation. For the methodology developed here, nonreversible
models do not have any greater computational burden than
reversible models, so a nonreversible model limited to two
substitutions per branch per site may be both computa-
tionally and statistically more justified. We developed this
approach to allow incorporation of more complex and
biologically realistic models without undue computational
burden, so it is encouraging that the assumptions made
result in small likelihood reductions that are easily
compensated by other means, and that the reconstructions
are only slightly divergent from extant or simulated
nucleotide frequencies.

Supplementary Material

Supplementary Material is available online at the
journal’s Web site.

Acknowledgments

We thank Sameer Z. Raina for useful discussion of
methodologies and results, Judith Beekman for comments
on the manuscript, and Todd Disotell’s group for sharing
mtDNA genome sequences prior to publication. This work
was supported by grants from the National Institutes of
Health (GM065612 and GM065580 to D.D.P. and R01-
GM06076004 and R24-GM65580 to C.B.S.) and the State
of Louisiana Board of Regents (Research Competitiveness
Subprogram LEQSF 2001–04-RD-A-08 and the Millen-
nium Research Program’s Biological Computation and
Visualization Center) and Governor’s Biotechnology
Initiative (to D.D.P.).

Literature Cited

Antezana, M. 2003. When being ‘‘most likely’’ is not enough:
examining the performance of three uses of the parametric
bootstrap in phylogenetics. J. Mol. Evol. 56:198–222.

Arnason, U., J. A. Adegoke, K. Bodin, E. W. Born, Y. B. Esa, A.
Gullberg, M. Nilsson, R. V. Short, X. Xu, and A. Janke. 2002.
Mammalian mitogenomic relationships and the root of the
eutherian tree. Proc. Natl. Acad. Sci. USA 99:8151–8156.

Arnason, U., A. Gullberg, A. S. Burguete, and A. Janke. 2000.
Molecular estimates of primate divergences and new hypo-
theses for primate dispersal and the origin of modern humans.
Hereditas 133:217–228.

Arnason, U., A. Gullberg, and A. Janke. 1998. Molecular timing
of primate divergences as estimated by two nonprimate
calibration points. J. Mol. Evol. 47:718–727.

Arnason, U., A. Gullberg, and X. Xu. 1996. A complete
mitochondrial DNA molecule of the white-handed gibbon,
Hylobates lar, and comparison among individual mitochon-
drial genes of all hominoid genera. Hereditas 124:185–189.

Arnason, U., and A. Janke. 2002. Mitogenomic analyses of
eutherian relationships. Cytogenet Genome Res 96:20–32.

Beardsley, P. M., A. Yen, and R. G. Olmstead. 2003. AFLP
phylogeny of Mimulus section Erythranthe and the evolution
of hummingbird pollination. Evol. Int. J. Org. Evol. 57:
1397–1410.

Benner, S. A. 2002. The past as the key to the present:
resurrection of ancient proteins from eosinophils. Proc. Natl.
Acad. Sci. USA 99:4760–4761.

Bleiweiss, R. 1998. Origin of hummingbird faunas. Biol. J.
Linnean Soc. 65:77–97.

Bollback, J. P. 2002. Bayesian model adequacy and choice in
phylogenetics. Mol. Biol. Evol. 19:1171–1180.

Bull, J. J., C. W. Cunningham, I. J. Molineux, M. R. Badgett,
and D. M. Hillis. 1993. Experimental molecular evolution of
bacteriophage-T7. Evolution 47:993–1007.

Collins, T. M., P. H. Wimberger, and G. J. P. Naylor. 1994.
Compositional bias, character-state bias, and character-state
reconstruction using parsimony. Syst. Biol. 43:482–496.

Cunningham, C. W., K. E. Omland, and T. H. Oakley. 1998.
Reconstructing ancestral character states: a critical reappraisal.
Trends Ecol. Evol. 13:361–366.

Douady, C. J., F. Delsuc, Y. Boucher, W. F. Doolittle, and E. J.
Douzery. 2003. Comparison of Bayesian and maximum
likelihood bootstrap measures of phylogenetic reliability.
Mol. Biol. Evol. 20:248–254.

Ancestral Reconstruction Bias and Functional Inference 1881



Eyre-Walker, A. 1998. Problems with parsimony in sequences of
biased base composition. J. Mol. Evol. 47:686–690.

Faith, J. J., and D. D. Pollock. 2003. Likelihood analysis of
asymmetrical mutation bias gradients in vertebrate mitochon-
drial genomes. Genetics 165:735–745.

Firat, M. Z., C. M. Theobald, and R. Thompson. 1997.
Univariate analysis of test day milk yields of British
Holstein-Firesian heifers using Gibbs sampling. Acta Agric.
Scand. Sect. A, Anim. Sci. 47:213–220.

Gaucher, E. A., J. M. Thomson, M. F. Burgan, and S. A. Benner.
2003. Inferring the palaeoenvironment of ancient bacteria on
the basis of resurrected proteins. Nature 425:285–288.

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based
approaches to calculating marginal densities. J. Am. Stat.
Assoc. 85:398–409.

Gelman, A., and D. B. Rubin. 1996. Markov chain Monte
Carlo methods in biostatistics. Stat. Methods Med. Res. 5:
339–355.

Gelman, A., D. B. Rubin, J. B. Carlin, and H. S. Stern. 1992.
Bayesian data analysis. Chapman and Hall, London.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. IEEE
Trans. Pattern Anal. Machine Intell. 6:721–741.

Giannasi, N., R. S. Thorpe, and A. Malhotra. 2000. A
phylogenetic analysis of body size evolution in the Anolis
roquet group (Sauria: Iguanidae): character displacement or
size assortment? Mol. Ecol. 9:193–202.

Goodman, M., C. A. Porter, J. Czelusniak, S. L. Page, H.
Schneider, J. Shoshani, G. Gunnell, and C. P. Groves. 1998.
Toward a phylogenetic classification of primates based on
DNA evidence complemented by fossil evidence. Mol.
Phylogenet. Evol. 9:585–598.

Hassanin, A., and E. J. P. Douzery. 1999. Evolutionary affinities
of the enigmatic saola (Pseudoryx nghetinhensis) in the
context of the molecular phylogeny of Bovidae. Proc. R. Soc.
Lond. B 266:893–900.

Hastings, W. K. 1970. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57:97–109.

Hibbett, D. S., and M. Binder. 2002. Evolution of complex
fruiting-body morphologies in homobasidiomycetes. Proc. R.
Soc. Lond. B 269:1963–1969.

Hillis, D. M., J. J. Bull, M. E. White, M. R. Badgett, and I. J.
Molineux. 1992. Experimental phylogenetics: generation of
a known phylogeny. Science 255:589–592.

Horai, S., K. Hayasaka, R. Kondo, K. Tsugane, and N. Takahata.
1995. Recent African origin of modern humans revealed by
complete sequences of hominoid mitochondrial DNAs. Proc.
Natl. Acad. Sci. USA 92:532–536.

Hormiga, G., N. Scharff, and J. A. Coddington. 2000. The
phylogenetic basis of sexual size dimorphism in orb-weaving
spiders (Araneae, Orbiculariae). Syst. Biol. 49:435–462.

Huelsenbeck, J. P. 1995. The performance of phylogenetic
methods in simulation. Syst. Biol. 44:17–48.

Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003.
Stochastic mapping of morphological characters. Syst. Biol.
52:131–158.

Huelsenbeck, J. P., and B. Rannala. 1997. Phylogenetic methods
come of age: testing hypotheses in an evolutionary context.
Science 276:227–232.

Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian
inference of phylogenetic trees. Bioinformatics 17:754–755.

Huelsenbeck, J. P., F. Ronquist, R. Nielsen, and J. P. Bollback.
2001. Bayesian inference of phylogeny and its impact on
evolutionary biology. Science 294:2310–2314.

Ingman, M., H. Kaessmann, S. Paabo, and U. Gyllensten. 2000.
Mitochondrial genome variation and the origin of modern
humans. Nature 408:708–713.

Karlin, S., E. S. Mocarski, and G. A. Schachtel. 1994. Molecular
evolution of herpesviruses: genomic and protein sequence
comparisons. J. Virol. 68:1886–1902.

Koshi, J. M., and R. A. Goldstein. 1996. Probabilistic reconstruc-
tion of ancestral protein sequences. J. Mol. Evol. 42:313–320.

Krawczak, M., A. Wacey, and D. N. Cooper. 1996. Molecular
reconstruction and homology modelling of the catalytic
domain of the common ancestor of the haemostatic vitamin-
K-dependent serine proteinases. Hum. Genet. 98:351–370.

Little, R. J. A., and D. B. Rubin. 1983. On jointly estimating
parameters and missing data by maximizing the complete-data
likelihood. Am. Stat. 37:218–220.

Liu, J. S., A. F. Neuwald, and C. E. Lawrence. 1995. Bayesian
models for multiple sequence alignment and Gibbs sampling
strategies. J. Am. Stat. Assoc. 90:1156–1170.

Lowe, T. M., and S. R. Eddy. 1997. tRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic
sequence. Nucleic Acids Res. 25:955–964.

Maddison, D. R., and W. P. Maddison. 2000. MacClade 4:
Analysis of phylogeny and character evolution. Sinauer
Associates, Sunderland, Mass.

Malcolm, B. A., K. P. Wilson, B. W. Matthews, J. F. Kirsch, and
A. C. Wilson. 1990. Ancestral lysozymes reconstructed,
neutrality tested, and thermostability linked to hydrocarbon
packing. Nature 345:86–89.

Meng, X. L., and D. B. Rubin. 1991. Using EM to obtain
asymptotic variance—covariance matrices—the SEM algo-
rithm. J. Am. Stat. Assoc. 86:899–909.

Messier, W., and C. B. Stewart. 1997. Episodic adaptive
evolution of primate lysozymes. Nature 385:151–154.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. 1953. Equations of state calculations by
fast computating machines. J. Chem. Phys. 21:1087–1092.

Nielsen, R. 2002. Mapping mutations on phylogenies. Syst. Biol.
51:729–739.

Nielsen, R., and J. P. Huelsenbeck. 2002. Detecting positively
selected amino acid sites using posterior predictive P-values.
Pac. Symp. Biocomput. 7:576–588.

Noor, M. A., and J. C. Larkin. 2000. A re-evaluation of 12S
ribosomal RNA variability in Drosophila pseudoobscura.
Mol. Biol. Evol. 17:938–941.

Oakley, T. H., and C. W. Cunningham. 2000. Independent
contrasts succeed where ancestor reconstruction fails in a
known bacteriophage phylogeny. Evolution 54:397–405.

Pauling, L., and E. Zuckerkandl. 1963. Molecular ‘restoration
studies’ of extinct forms of life. Acta Chem. Scand. 17:9–16.

Pollock, D. D., and W. J. Bruno. 2000. Assessing an unknown
evolutionary process: effect of increasing site-specific
knowledge through taxon addition. Mol. Biol. Evol. 17:
1854–1858.

Pollock, D. D., W. R. Taylor, and N. Goldman. 1999.
Coevolving protein residues: maximum likelihood identifica-
tion and relationship to structure. J. Mol. Biol. 287:187–198.

Rice, J. A. 1995. Mathematical statistics and data analysis.
Duxbury Press, Belmont, Calif.

Richard, F., M. Lombard, and B. Dutrillaux. 2003. Reconstruc-
tion of the ancestral karyotype of eutherian mammals.
Chromosome Res. 11:605–618.

Robinson, D. M., D. T. Jones, H. Kishino, N. Goldman, and J. L.
Thorne. 2003. Protein evolution with dependence among
codons due to tertiary structure. Mol. Biol. Evol.20:1692–1704.

Sanderson, M. J., M. F. Wojciechowski, J. M. Hu, T. S. Khan,
and S. G. Brady. 2000. Error, bias, and long-branch attraction
in data for two chloroplast photosystem genes in seed plants.
Mol. Biol. Evol. 17:782–797.

Sanson, G. F., S. Y. Kawashita, A. Brunstein, and M. R. Briones.
2002. Experimental phylogeny of neutrally evolving DNA

1882 Krishnan et al.



sequences generated by a bifurcate series of nested poly-
merase chain reactions. Mol. Biol. Evol. 19:170–178.

Schluter, D., T. Price, A. O. Mooers, and D. Ludwig. 1997.
Likelihood of ancestor states in adaptive radiation. Evolution
51:1699–1711.

Schmitz, J., M. Ohme, and H. Zischler. 2000. The complete
mitochondrial genome of Tupaia belangeri and the phyloge-
netic affiliation of scandentia to other eutherian orders. Mol.
Biol. Evol. 17:1334–1343.

———. 2002. The complete mitochondrial sequence of Tarsius
bancanus: evidence for an extensive nucleotide compositional
plasticity of primate mitochondrial DNA. Mol. Biol. Evol.
19:544–553.

Soltis, D. E., A. E. Senters, M. J. Zanis, S. Kim, J. D. Thompson,
P. S. Soltis, L. P. R. De Craene, P. K. Endress, and J. S. Farris.
2003. Gunnerales are sister to other core eudicots: implica-
tions for the evolution of pentamery. Am. J. Bot. 90:461–470.

Stewart, C. B., J. W. Schilling, and A. C. Wilson. 1987. Adaptive
evolution in the stomach lysozymes of foregut fermenters.
Nature 330:401–404.

Swofford, D. L. 2000. Phylogenetic analysis using parsimony
(*and other methods). Version 4. Sinauer Associates, Sunder-
land, Mass.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994.
ClustalW: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic
Acids Res. 22:4673–4680.

Wang, C. S., J. J. Rutledge, and D. Gianola. 1994. Bayesian
analysis of mixed linear models via Gibbs sampling with an

application to litter size in Iberian pigs. Genet. Sel. Evol.
26:91–115.

Webster, A. J., and A. Purvis. 2002. Testing the accuracy of
methods for reconstructing ancestral states of continuous
characters. Proc. R. Soc. Lond. B 269:143–149.

Xu, X., and U. Arnason. 1996. A complete sequence of the
mitochondrial genome of the western lowland gorilla. Mol.
Biol. Evol. 13:691–698.

Yang, Z. 1996a. Among-site rate variation and its impact on
phylogenetic analyses. Tree 11:367–371.

———. 1996b. Phylogenetic analysis using parsimony and
likelihood methods. J. Mol. Evol. 42:294–307.

Yang, Z., S. Kumar, and M. Nei. 1995. A new method of
inference of ancestral nucleotide and amino acid sequences.
Genetics 141:1641–1650.

Zhang, C., M. Zhang, J. Ju et al. (11 co-authors). 2003. Genome
diversification in phylogenetic lineages I and II of Listeria
monocytogenes: identification of segments unique to lineage II
populations. J. Bacteriol. 185:5573–5584.

Zhang, J., and M. Nei. 1997. Accuracies of ancestral amino acid
sequences inferred by the parsimony, likelihood, and distance
methods. J. Mol. Evol. 44:S139–S146.

Zhang, J., and H. F. Rosenberg. 2002. Complementary
advantageous substitutions in the evolution of an antiviral
RNase of higher primates. Proc. Natl. Acad. Sci. USA
99:5486–5491.

Herve Philippe, Associate Editor

Accepted June 2, 2004

Ancestral Reconstruction Bias and Functional Inference 1883


