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1. INTRODUCTION

Microsatellites have fully realized their early promise
in building genetic maps (e.g., Dib et al. (1996)) and in
estimating relatedness among individuals (Strassman
et al., 1996). There is a striking absence, however, of
successful application to phylogenetic reconstruction.
This almost certainly results from a combination of two
complicating factors: (1) the existence of range con-
straints limiting the size of microsatellite alleles, and (2)
the degradation of microsatellite loci over time. Preli-
minary studies indicate that the latter can sometimes
make it difficult to find microsatellites which are poly-
morphic in multiple species (Shriver et al., 1995; Garza
et al., 1995; Goldstein and Clark, 1996), although in
other instances polymorphic microsatellites can last over
considerable phylogenetic divergences (Fitzsimmons
et al., 1995; Rico et al., 1996). In order to facilitate the use
of microsatellites in phylogenetic reconstruction, the
dependence of the microsatellite degradation rate on
microsatellite type and genomic location should be
studied systematically. Our primary concern in this
paper, however, is range constraints, whose effects may
often be realized before those of degradation.

A number of authors have recently emphasized that
range constraints critically influence the utility of micro-
satellite loci (Garza et al., 1995; Feldman et al., 1997;
Nauta and Weissing, 1996; Slatkin, 1995b. Goldstein
et al., 1995a; Goldstein et al., 1995b; Zhivotovsky et al.,
1997). For example, one recently introduced distance,
($+)2, the squared separation between population allelic
means, is extremely biased under range constraints
(Goldstein et al., 1995b). Feldman et al. (1997) provided
an analytical characterization of stepwise mutations
under range constraints and developed a less biased
distance, DL , under the assumption of no variation
among loci in range constraints and mutation rates. They
also show that in the general case the appropriate correc-
tion cannot be implemented due to statistical difficulties.
Computer simulations were used, however, to demon-
strate that DL is not highly sensitive to range and rate
variation. Nevertheless, DL is formally incorrect and has
a non-linear expectation under these conditions, and
there may be statistically appropriate distance measures
that perform significantly better. Here we apply least
squares procedures to improve estimates in the more
realistic general case when the range and mutation rate
vary among loci, and show that linearity is always
improved, while accuracy can be improved dramatically
under conditions of mutation rate variation. In order to
implement the method, and more generally to improve

our understanding of properties of the stepwise process,
information about range constraints and mutation rates
are required. It could be particularly useful if these
properties were associated with a priori characteristics of
a microsatellite, such as its motif size and composition.
Unfortunately, almost nothing is known about range
constraints beyond their existence. Furthermore, esti-
mates of mutation rates using pedigree analyses are
averages across loci, and the data are too few to allow
rates at different loci to be compared (Weber and Wong,
1993).

Here we provide a detailed evaluation of how range
constraints may be estimated from population data. We
also compare the estimation of mutation rates obtained
from allelic variances and from an iterative least squares
procedure based on population divergence. The latter
approach is likely to be less sensitive to violations of
mutation-drift equilibrium caused by changes in popula-
tion size or by selection at linked sites (Feldman et al.,
1997). Beyond their use in implementing improved
distance measures, such methods are necessary to parti-
tion microsatellite loci into sets appropriate for specific
phylogenetic problems, a practice which must become
routine if microsatellites are to have wide application
in interspecific phylogenetic reconstruction. Good
estimators of the range and mutation rate are also
needed to develop a clear understanding of microsatellite
evolution.

2. RANGE ESTIMATION
CONSIDERATIONS

2.1. Expected Behavior of the Distance

A recently introduced measure of genetic distance for
microsatellites, ($+)2, the squared difference between
mean allelic scores averaged over all loci, was shown to
have an expectation proportional to the time, t, elapsed
since the separation of two populations in the absence of
range constraints (Goldstein et al., 1995b). Feldman
et al. (1997) modeled microsatellite evolution under
the symmetric stepwise mutation model (SSM) with
reflecting boundaries (range constraints) and maximum
mutation size of one repeat unit. They showed that in this
model the expectation of ($+)2 for a locus with total
mutation rate 2; (assumed constant for all allelic sizes)
and range R will reach a maximum of

M(R)=
(R2&1)

6
&D0 , (1)
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where, with N chromosomes, D0 can be approximated by
4;(N&1)(1&1�R) when N;<1, or calculated numeri-
cally using their Eq. (11) when N; is large. They also
showed that the rate of approach to this maximum
will be the leading non-unit eigenvalue of the squared
mutation matrix, namely (1&2;+2; cos ?�R)2. For
small ; it is convenient to use an approximation for the
expectation of ($+)2:

E[($+)2]=M(R)[1&exp[&(4;&4; cos(?�R)) t]].

(2)

The lower curve in Fig. 1 shows the analytical expecta-
tion of ($+)2 with time for an example parameter set,
along with mean values for simulated population pairs,
and it is clear that the expectation closely matches
simulated results. It is also clear that the use of this expec-
tation in concert with the formula of Zhivotovsky and
Feldman (1995) for the standard deviation gives accurate
results early on, and is not off by more than 250 for
larger separation times. In these and other simulations
throughout, haploid populations of a given size, N (here
N=50), were started from a random position within

FIG. 1. Expectation and standard deviation of delta mu squared. The mean (squares) and standard deviation (filled circles) of ($+)2 are shown
for 1000 simulated replications where N=50, R=20, and ;=0.01. The predictor of the standard deviation from the observed mean and the formula
(ZF ) in Zhivotovsky and Feldman (1995) is also shown (open circles). Continuous lines are the expectation of the mean as calculated from
Eq. (2)(solid line), and the expectation of the standard deviation calculated from Eq. (2) and ZF (short�long dashed line). Time is measured in units
of 4;t, where ; is the directional mutation rate and t is the number of generations. In this and all other simulations, populations of size N were allowed
to equilibrate, and were then duplicated at t=0, after which they evolved independently according to the SSM model with reflecting boundaries and
the parameters given.

a given range, R (here R=20), allowed to equilibrate
under the mutation model with range, R, and mutation
rate ; (here ;=0.01). This population was then split into
two identical populations, also of size N, which were
allowed to evolve independently of each other for a given
period of time, after which relevant estimators were
calculated. If appropriate, further population divergences
were handled in the same manner. The simulations were
generally repeated 1000 times to get accurate estimates of
the mean behavior of the relevant estimators.

2.2. Range Estimation

The utility of microsatellite loci in phylogenetic
reconstruction will be strongly affected by their ranges,
which will not be known at the outset and need to be
estimated from population data. Here we discuss issues
related to such estimation. In order to take advantage of
some useful results from order statistics (Arnold 1992,
p. 33), we first consider the case of N; sufficiently small
that each of the sampled populations maintain a single
allele at any one time. For this case, we obtain a simple
analytical result for predicting the true range from the
observed range of alleles. Using computer simulations,
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we then find a simple correction in the presence of allelic
variance, which can be large in microsatellites.

Let K be the number of sampled populations, and let
the width, WK , stand for the difference between the
observed maximum and observed minimum scores
among all the K populations. If the allelic score from each
of the K populations is distributed as a continuous
uniform random variable on [a, R+a&1], where a is an
unknown minimum, then the expectation of the width is

E[Wk | R]=(R&1)
K&1
K+1

. (3)

Note that although the unknown minimum, a, may be
physically bounded (for example, it cannot be less than
one repeat), this information is not used in the above
equation: the actual minimum is not estimated. From
Eq. (3), a reasonable estimator for R in this case is

R� =
K+1
K&1

(Wk)+1. (4)

This assumes that the numbers of repeats (scores) are
uncorrelated across populations (a reasonable assump-
tion if populations have diverged sufficiently). The dif-
ference between this estimator and a more complex
estimator assuming a discrete uniform distribution is
negligibly small (data not shown), and in any case will be
accounted for in the subsequent correction for allelic
variation. The accuracy of Eq. (4) in estimating R was
evaluated by 10,000 replicated computer simulations of
points drawn from a discrete uniform distribution on
[1, R], and for a variety of R and K was generally
found to have a lower bias and a smaller mean square
error [MSE=BIAS2+Var; (Rice, 1995)] than an
uncorrected estimate (data not shown).

Microsatellite mutation rates are often sufficiently high
that the variance in allele size within populations must
be taken into account in estimating the range. The
expectation of the variance in allele size under the
unconstrained SSM model in a population of N chromo-
somes is 2(N&1) ; (Moran, 1975). The expectation
under the constrained model can be evaluated numeri-
cally (Nauta and Weissing, 1996; Feldman et al., 1997).
For N;�R sufficiently small the variance is still propor-
tional to (N&1) ;rN; (Feldman et al., 1997), and it is
clear that when N; is moderately large the biases of the
uncorrected estimates of the range (Mk and Wk) will be
less than would be expected from the analysis of the
model assuming no variation within populations. Thus,
the statistical corrections developed in the absence of
variation are too large in the presence of variation,

assuming that the difference between the grand minima
and maxima is used to estimate the range. The discre-
pancy is small for N; less than one, but as N; becomes
larger this discrepancy increases to the point where a
correction based only on the uniform distribution of
points would result in an estimate significantly greater
than the true range.

Here we estimate the effect of variation using computer
simulations. To do so, we compare the average observed
width for populations which have significant allelic varia-
tion to the corresponding expectation based on a model
without variation (Eq. (3)). We will henceforth call the
difference between these the observed minus expected
width, or 2W . Both the number of individuals sampled,
n, as well as the allelic variance, V, influence 2W .
Fortunately, computer simulations of populations with
different amounts of allelic variation (1000 replicates per
condition) show that 2W is independent of the range,
only slightly dependent on K, and is linearly dependent
on - N; (an approximate numerical substitute for the
square root of the expected allelic variance). Fig. 2 shows
values of 2W for two different sample sizes and two
values of R for a series of 14 values of - N; between 0.0
and 2.23. Also shown are the regression lines. As long as
R is sufficiently large, 2w is not dependent on R and there
appears to be a linear relationship between 2w and - N;.
The regression lines for different values of R are virtually
identical (Fig. 2: for n=20, the slopes for R=40 and
R=50 are 2.16 and 2.15, the intercepts are 0.68 and 0.70,
and the correlation coefficients are 0.995, and 0.991; for
n=5, the slopes for R=40 and R=50 are 1.51 and 1.49,
the intercepts are 0.75 and 0.72, and the correlation coef-
ficients are 0.983 and 0.980). Fig. 2 also illustrates how
the slope of the relationship between - N; and 2w is
dependent on the sample size, n. Note that the intercept
is independent of n since there is no benefit from
increased sampling in the absence of allelic variation.
The intercept is nonzero (but small) because of the
assumption of a continuous rather than discrete distribu-
tion in the calculation of E[WK]. The dependence of 2w

on K is slight, but discernible (data not shown). Note
that the linear relationship shown in Fig. 2 breaks down
when the square root of the expected allelic variance is on
the order of R, but these are precisely the conditions
when a correction on the observed width is unnecessary.

The linear relation of 2w with - N; allows for a simple
empirical correction. The linear equations for various
reasonable values of n and K derived from repeated
sampling of 10,000 random populations are shown in
Table 1. The slopes were obtained by linear regression of
2W on - N; for values of N; between 0.0 and 5.0, and
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FIG. 2. Difference between observed and expected width (2W). The difference between the average observed width and its expectation assuming
no allelic variation (2W), as a function of the square root of the product of population size and total mutation rate (which is approximately propor-
tional to the allelic standard deviation). Points are plotted for ranges of 40 (circles) and 50 (triangles), and for 5 (open symbols) and 20 (filled symbols)
individuals sampled per population. The number of pre-equilibrated populations (N=50) sampled was 6, and each data point is the average of 1,000
independent simulations. Regression lines are plotted as solid lines.

TABLE

Displacement as Function of Allelic Variance

K : 1 2 3 4 5 6 8 10

Intercept (�)

0.0 0.343 0.568 0.568 0.676 0.727 0.754 0.728

n Slope (|)

2 0.912 0.913 0.817 0.920 0.840 0.798 0.758 0.738
3 1.37 1.34 1.23 1.34 1.24 1.20 1.12 1.08
4 1.65 1.61 1.50 1.59 1.50 1.43 1.34 1.28
5 1.84 1.81 1.68 1.75 1.65 1.58 1.49 1.41
6 1.96 1.95 1.83 1.88 1.79 1.69 1.60 1.52
8 2.19 2.13 2.02 2.07 1.95 1.86 1.75 1.64

10 2.32 2.27 2.13 2.19 2.07 1.97 1.83 1.74
12 2.43 2.36 2.23 2.27 2.15 2.05 1.90 1.80
14 2.50 2.44 2.30 2.34 2.21 2.11 1.95 1.85
16 2.57 2.50 2.35 2.39 2.26 2.16 2.00 1.88
18 2.612 2.55 2.39 2.43 2.31 2.20 2.03 1.91
20 2.651 2.58 2.43 2.47 2.34 2.23 2.06 1.93

Note. Slopes and intercepts for linear relationship of 2W with allelic standard deviation. Slopes (|K, n) and intercepts (�K) for use in Eq. (10). Predic-
tors of the linear parameters were calculated for all combinations of the number of populations sampled (K=1, 2, 3, 4, 5, 6, 8, 10) and the number
of individuals sampled (n=2, 3, 4, 5, 6, 10, 12, 14, 16, 18, 20). Slope and intercept were obtained by regression of 2W versus - N; (used as a substitute
for allelic standard deviation) in 1,000 repeated samples. The intercepts for each K are average of all intercepts obtained with different n and that K.
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the intercept is the average intercept calculated for all
values of n. This suggests that the expected value of the
width, WK , should be modified from Eq. (3) as follows.

EA[WK]=(R&1)
K&1
K+1

+�K+|K, n - N;, (5)

where |K, n is the slope of 2w with allelic standard devia-
tion, and �K is the intercept, which is dependent only on
K. This expression suggests the following estimator for
the range,

R� =
K+1
K&1

(W&�K&|K, n - N;
t

)+1. (6)

A tilde is placed above - N; in Eq. (6) because, in prac-

tice, - N;
t

would be calculated from the observed mean
allelic variance. Values for |K, n, and �K can be looked up
in Table 1 for use in Eq. (6). In using Eq. (6), it is clear
that when N; is sufficiently large relative to the range no
correction is needed; that is, the correction should be
ignored if R� is less than the observed width plus one. This
neatly accounts for the conditions where the assumption
of the linear relationship between the correction and
- N; breaks down.

Computer simulations show that an improvement
in range estimation can still be achieved in this more
complicated case of allelic variation. The behavior of

FIG. 3. Fractional mean square error in presence of allelic variation. The mean square errors (MSE) as a fraction of the range for uncorrected
and corrected (using Eq. (9) and Table 1) range estimates are plotted against the range. Each point is the average of 10,000 simulations of 6 popula-
tions. In (a), the number individuals sampled was 20, and N; was either 0.5 (open symbols) or 5.0 (filled symbols). The uncorrected averages are
solid lines (squares), while the corrected versions are dashed lines (circles). In (b), only corrected averages are shown, and the number of individuals
sampled was 5 (dashed lines, circles) or 20 (solid lines, squares), while the N; was either 0.5 (upper set of lines, open symbols) or 5.0 (lower set of
lines, filled symbols).

Eq. (6) as an estimator of the range is shown in Fig. 3.
When N;=0.5 and 20 individuals are sampled per pop-
ulation, the reduction in MSE obtained by using Eq. (6)
rather than the uncorrected width is substantial for all
ranges over 10. For a larger allelic variance (N;=5.0),
the reduction becomes substantial for ranges over 30
(Fig. 3a). In Fig. 3b it can be seen that the decrease in
MSE that results from reducing the sample size from 20
to 5 is moderate when N; is 5.0, and minimal when N;=
0.5. We may conclude: (1) it is possible to make a
reasonable correction for the range estimate even when
there is substantial allelic variation at microsatellite loci,
and (2) extensive sampling within a population for the
purpose of making such a correction appears worthwhile
only when the allelic variance is much greater than one.
It would be interesting to determine exactly how the
sampling requirements increase with N;.

It was assumed above that populations have diverged
sufficiently that their allelic scores are independent
samples on the range. In reality, the non-independence of
populations is an issue. One way to deal with it would be
to use the correlation among allelic scores to define an
``effective'' K, but we have made no attempts to do so
here. We suggest that when range estimation is used for
fast selection of loci appropriate for a particular study,
the methods outlined above should be adequate as long
as an effort is made to ensure that the populations used
are reasonably divergent. For phylogenetic studies, the
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taxa of interest may well be highly correlated, and it will
be necessary to include more divergent, and therefore less
correlated, taxa in order to obtain accurate range
estimates. The results discussed here indicate that the
number of extra divergent taxa needed is not excessive.
Possible interactions between the range estimates and
distance estimates presented in the following sections will
likely be complex, and should be the focus of future
study. The performance and optimal use of these
methods in evaluating real datasets are also important
future subjects of research.

3. DISTANCE ESTIMATES AND
MUTATION RATES

Feldman et al. (1997) showed that a useful distance
measure when all loci have sufficiently similar ranges (R)
and mutation rates (;) is

DL=log _\LM& :
L

i=1

($+)2
i +<LM& , (7)

and that

E[DL]=Ct, (8)

where M is the maximum value of the distance, given in
Eq. (1), L is the number of loci, C is the constant
&4;(1&cos ?�R), t is time, and the expectation is for
replicates of the evolutionary process. As emphasized
by these authors, it will often be difficult to find a large
number of loci all having the same parameters. Loci with
similar parameters could be clustered. Feldman et al.
(1997) demonstrated, however, that the linearity of
Eq. (7) is not, in fact, highly sensitive to variation in R
and ;. Nevertheless, it seems worthwhile to develop
methods analytically appropriate in the case of rate
and range variation. Here we introduce a least
squares approach, which can improve both linearity and
accuracy.

3.1. Least Squares Estimation of Distance

A simple least squares estimate of the separation time
between two populations can be obtained by minimizing
the sum of squares of the differences between the
observed and expected values of ($+)2

l across all loci,
with respect to time. That is, we minimize with respect to
time

SS=:
l

[($+)2
l &E[($+)2

l, t]]2, (9)

with the sum over all loci and the expectation given in
Eq. (2). For loci with different ranges (Rl), mutation
rates (;l), and maximal distances (Ml),

d(SS)�dt=2 :
l \

Cl Ml

eCl t + [Ml (1&e&Cl t)&($+)2
l ], (10)

where Cl is [4;l&4;l cos(?�Rl)].
When all Rl , ;l , and thus Ml and Cl , are identical,

d(SS)�dt simplifies to

d(SS)�dt=2 \CM
eCt + _M \L&:

l

e&Ct+&:
l

($+)2
l ],

(11)

so that at d(SS)�dt=0, we have

:
l

($+)2
l =LM(1&eCt). (12)

Solution of this equation for Ct (using observed values of
($+)2) leads to the distance suggested by Feldman et al.
(1997) and shown in Eq. (7). Their distance, therefore,
turns out to be the least squares estimate in the absence
of rate and range variation. When the ranges and muta-
tion rates differ across loci, an analytical expression for
t is not apparent and numerical methods must be used. In
practice, we iteratively increase or decrease t in Eq. (2)
for use in Eq. (9) until a minimum sum of squares is
reached. The incremental change in t is then reduced, and
the process repeated until the change in value of Eq. (9)
is less than some arbitrary small cutoff. The time value at
that point is then the least squares distance, DLS .

The Least Squares procedure is usually more accurate
when the squared differences are weighted by the inverse
variance-covariance matrix of the least squares estimates
at each locus (Goldstein and Pollock, 1994; Pollock and
Goldstein, 1995; Pollock, 1998). Since all loci are
assumed to be independent here, the covariance between
loci is zero, and the weights are simply the variances
of the least squares distances at each locus _2

l .
The individual estimates must also have the same
expectation, and thus the generalized sum to be mini-
mized with respect to time (as described above for DLS)
is

GSS=:
l

[($+)2
l &E[($+)2

l, t]]2

E[($+)2
l, t]

2 _2
l

. (13)

This equation is minimized as described above for DLS

to obtain a generalized least squares distance, DGLS .
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The variance at each locus can be calculated analytically
by beginning with the observation that Eq. (12) can
be solved for t rather than Ct, as in Eq. (7). Thus, the
expectation of DLS for an individual locus is

E[DLS] l, t=&
log[(Ml&($+)2

l )�M l]
4;l (1&cos[?�Rl])

. (14)

We can treat Eq. (14) as a function of ($+)2
l , and taking

the derivative with respect to ($+)2
l and using the formula

for the variance of ($+)2
l from Zhivotovsky and Feldman

(1995), we can employ the delta method (Rice, 1995,
p. 149) to obtain

_2
l r

2[E[($+)2
l, t]]2

[Ml&E[($+)2
l, t]]2C2 , (15)

where the expectation of ($+)2 is given in Eq. (2) and C
is &4;[1&cos(?�R)]. In the process of iteration used to
arrive at the generalized least squares estimate of time,
we observed that it is better to use an initial estimate of
time to calculate the expectation and variance of ($+)2,
which are then kept constant throughout the iterations.
We use the estimate of time from DLS for that purpose.

Least Squares estimation and Generalized Least
Squares estimation of t were applied to a set of 100 loci
with mutation rates distributed on the interval, [0.1,
0.001]. In an approach similar to Goldstein et al.
(1995a), Pollock and Goldstein (1995), and Goldstein
and Pollock (1994), two populations were allowed to
diverge for a sufficiently long time that many of the loci
would have been uncorrelated between the two popula-
tions, and mean distance measures and their variances
for 200 replications were calculated at regular intervals
during that time. DLS and DGLS were compared to ($+)2

for all loci (an unbiased estimator of 2;t in the absence
of range constraints), along with the allele-sharing
distance (DAS , which, in the absence of range con-
straints, is known to be more accurate early in the
process of divergence. see Goldstein et al. (1995a) for
definition of DAS), and the log correction from Feldman
et al. (1997), DL . The linearity of the distances with time
was assessed, and it is clear that ($+)2, DAS , and DL all
asymptote, while the least squares estimators are nearly
linear with time (Fig. 4a). At large distances, DLS may
become slightly curved. This is similar to an effect
previously noted in sequence-based distances, and is due
to the small number of loci which are actually contribut-
ing information to the distance at these time points
(Tajima, 1993). DGLS is much less susceptible to
this effect. With a larger number of loci, linearity is
maintained for a longer time. This is the same effect

demonstrated in Feldman et al. (1997), where adding
more loci with the same R and ; extends the period of
linearity of their distance.

The accuracy index,(dD�dt) _&1
D , of a distance, D, with

respect to time, t, (where _D is the standard deviation of
the distance), is a good predictor of the utility of a
distance measure in phylogenetic reconstruction (Tajima
and Takezaki, 1994). For evaluation of simulation
results, we may use (2D�2t) s&1

D , where 2D is the
difference between the mean distances at one time point
and another 2t later. The observed standard deviation,
sD , is calculated from data for the second time point in
each accuracy calculation. For visual clarity, and because
absolute accuracy is generally less important for deeper
nodes, accuracy is weighted by time in the comparisons
shown in Fig. 4b. As in the absence of range constraints
(Goldstein et al., 1995a), DAS is accurate early on, but
it quickly becomes the least accurate. Despite their
improvements in linearity, the log distance, DL , and
the unweighted DLS are less accurate than ($+)2 over the
entire range of conditions shown because of the number
of loci used. DGLS , however, is the most accurate distance
after the first time interval (over which the accuracy of
DAS is not calculated since the distance does not start at
zero), having 21�440 greater accuracy (average=370)
than ($+)2.

The same five distances were also applied to a similar
set of simulations where R was evenly spaced from 10 to
48 across the 100 loci, while the mutation rate was held
constant at 0.1. As in Fig. 4a and 4b where mutation rates
varied, ($+)2, DAS , and DL all begin to asymptote, while
the least squares estimators are close to linear with time
(Fig. 4c). As noted in Feldman et al. (1997), DL will
become increasingly linear with increasing numbers of
loci, and with sufficient loci it should outperform ($+)2.
In terms of accuracy, however, the situation is slightly
different than in the case where R varies (Fig. 4d). The
relative accuracies of ($+)2, DAS , DL and DLS are similar
to the case with varied mutation rates, but DGLS is almost
identical in accuracy to DLS , which is slightly less
accurate than ($+)2 and DL . The best explanation for this
may be that when R varies, the loci which lose accuracy
most quickly are those with the smallest expectation as
time goes by. In contrast, when mutation rates vary, the
loci with the highest mutation rates will approach their
maximum more quickly than other loci, at which time
they will be much less accurate and have a greater expec-
tation than other loci. Thus, noisy loci should be given
less weight at greater distances. The noisy loci in the case
where R varies are already naturally and appropriately
downweighted when ($+)2 is taken as the average across
all loci, and so the least squares approach cannot do
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much better; in fact, it seems to suffer slightly due to the
complexity of its calculation. It appears that when all
mutation rates are known to be identical among loci,
($+)2 is the most accurate distance. The accuracy of DL ,
however, is very similar and we may expect that it will
improve with increasing numbers of loci. DLS and DGLS

have the best combination of accuracy and linearity.
These results are not particularly sensitive to the number
of loci; the same mutation rate and range parameter
sets were also simulated for 20 loci (1000 replications
each), and the results are almost identical except that
all the curves are shifted downwards (by a factor of
approximately - 5) compared to the data for 100 loci
(data not shown).

If both mutation rates and ranges vary among loci, the
relative merits of each distance will likely depend on
which parameters vary more. The increases in accuracy
of DGLS over a reasonable degree of mutation rate varia-
tion are somewhat greater than its relative decrease in
accuracy for reasonable range variation. It is therefore
likely, although not certain, to be both the most accurate
and linear distance measure among those considered.
The increase in the accuracy of DGLS over other distances
might also be improved in studies with many loci if loci
can be clustered by the size of their ranges. Admittedly,
the difficulty of implementation of a distance is also
a consideration, and when the distances are expected to
perform similarly, it might be preferable to use the
simpler distances, ($+)2 or DL .

In the case where R and ; are identical at all loci,
all loci have the same bias and variance properties at all
times. When R and�or ; differ among loci, some loci will
have lower accuracy than others at later time points, and
will thus contribute disproportionately to the variance
and any bias which might exist in the DLS distance.
The generalized least squares procedure compensates
by downweighting those loci with higher variance, but
the effective number of loci is reduced and the deeper
distances have greater coefficients of variance. It is
therefore preferable to select a larger number of loci
with properties (large R, small ;) that allow them to be
informative for deeper separation times rather than to
increase the assemblage randomly. It is known that a
large number of loci are needed in order to obtain much
resolving power even under a model without range
constraints. With range constraints, resolving power will
be less at deeper separation times, and even more loci will
be needed to obtain the level of phylogenetic resolution
available in their absence. Thus, it is important to
ameliorate this effect as much as possible by preferen-
tially selecting and devoting resources to those loci which
will lose information content least rapidly.

Another complication, not directly considered here, is
that if N; is sufficiently large relative to R, then the high
allelic variance will not allow divergence between
populations. Although all distances will be affected to
some extent, Nauta and Weissing (1996) have shown
that they are differentially sensitive to variation in N;. In
practice, it will be important to determine that the allelic
variance is well below the maximum possible for the
relevant R.

3.2. Mutation Rates

An obvious estimator for the mutation rate at a locus
is the observed allelic variance (V=D0 �2), which is
proportional to N; if the populations are in equilibrium
and N;�R<<1. Under these conditions the expected
value of allelic variance (V ) at a locus across all popula-
tions will be equal to 2;(1&1�R)(N� &1), where N� is the
mean (haploid) population size. Thus if R is known, 2N� ;
can be easily estimated from V as 2N� ;r2(N� &1) ;=
V�(1&1�R). The ratio of these averages for any two loci,
2N� ;i �2N� ;j , will then be an estimate of the ratio of
mutation rates, ;i �;j . For larger N;�R, N; can be
estimated numerically from V as described in Feldman
et al. (1997). Despite the attractive simplicity of this
approach, it is not ideal for many reasons. First, it is
heavily dependent on the assumption that all loci in all
populations are at mutation-drift equilibrium. Most loci
in a particular population may be out of mutation-drift
equilibrium if there have been recent large changes in
population size, and it can be seen from the results of
Feldman et al. (1997) that the individual loci will only
return to equilibrium at a rate approximately equal to

\1&
1
N+ (1&2;+2; cos ?�R)2. (16)

Second, even if there have been no disturbances in pop-
ulation size, selective sweeps or balanced polymorphism
will perturb allelic variances at closely linked micro-
satellite loci (Slatkin, 1995a). The distribution of
slightly deleterious alleles throughout the genome may
also influence microsatellite variation (Hudson, 1995;
Charlesworth, 1994). Finally, it is known that in the
absence of range constraints, the variance across loci in
the allelic variance is high (Zhivotovsky and Feldman,
1995), and so the allelic variance would not be an
accurate measure of relative mutation rates even if it were
entirely unbiased.

Relative mutation rates at microsatellite loci may
also be calculated using population divergences. A
simple strategy commonly used in the study of DNA
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FIG. 4. Behavior of distances with time. The average behavior of ($+)2 (Delta Mu), Allele Sharing (AS), the Log Distance correction (DL), and
the unweighted (LS) and weighted (generalized) least squares estimate (GLS) are shown for 200 replicates of 100 loci in populations of size N=50.
In (a) and (b) mutation rates were distributed from 0.1 to 0.001, and the range was 50. In (c) and (d) locus ranges were evenly distributed from 10
to 48 and the mutation rate was 0.1. In (a) and (c), all distances are adjusted for comparative purposes such that their initial rate of increase over
the first time interval is equal to 2t. In (b) and (d), the accuracy (rate of increase�standard deviation of the distance) is weighted by time. Accurate
knowledge of locus ranges and mutation rates is assumed. The time axes are measured in units of quadruple the median mutation rate (0.01 in (a)
and (b), 0.1 in (c) and (d)) times generations (simulation cycles).

265Microsatellites and Range Constraints



File: 653J 136311 . By:XX . Date:11:06:98 . Time:15:37 LOP8M. V8.B. Page 01:01
Codes: 548 Signs: 33 . Length: 54 pic 0 pts, 227 mm

FIG. 4��Continued
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sequence evolution to estimate the ratio of transition to
transversion rates is to compare the ratio of uncorrected
distances for closely related sequences. This strategy
could also be applied to microsatellites, but it is highly
inaccurate even for transition and transversion rates,
which probably differ by no more than a factor of 10�20
(Wakeley, 1994). With microsatellites, where mutation
rates may differ by a factor of 100, another approach is
needed. The approach taken by Pollock and Goldstein
(1995) for estimating rate ratios in DNA sequences is
also unsuitable for microsatellites. They average the
ratios of corrected distances (weighted by their vari-
ances) across all taxon pairs, but distance corrections for
single microsatellite loci have large variances and may be
undefined (Feldman et al, 1997). Here we use the least
squares methodology iteratively to estimate separation
times and mutation rates.

In the absence of perturbing factors, the rough
estimates of the relative mutation rates obtained from the
mean allelic variances will have a constant factor of N.
When using the least squares or generalized least squares
methods described above, this factor only affects
estimates of the time of separation between population
pairs, j, in that the estimates of time will be tj �N rather
than tj . Thus, as usual, time cannot be estimated
independently without further (generally unavailable)
information on the magnitude of the mutation rate (or
the population size). The proportional time estimates can
be put into the sum of squares

SS=:
j

[($+)2
j &E[($+)2

j, ;]]2, (17)

where the sum is now over all population pairs, j, and
again the expectation is given in Eq. (2). This sum is
minimized with respect to ;, and the process is repeated
for all loci to obtain new estimates of the relative
mutation rates. With the newly estimated mutation
rates, the pairwise time estimates can then be recalcu-
lated. This minimization could be performed iteratively
for a set number of times, or until convergence of the time
and mutation rate parameters to a specified level of
accuracy. As with least squares estimation of time, the
weighted least squares solution can also be obtained by
weighting each squared difference by the variance of the
mutation rate estimate for the locus at the estimated time
of separation of the population pair, j, obtained in a similar
manner to the variance of the time estimate. Since t is the
expectation of DLS , if t is given then from Eq. (14) we may
write

;� l=
log[(Ml&($+)2

l )�M l]
4t(1&cos[?�Rl]

, (18)

and

_2
; r

2[E[($+)2]]2

(M&E[($+)2])2,2 , (19)

where ,=4t(1&cos(?�R)). Note that this is a weighted
rather than generalized least squares solution as the
correlation between population pairs is not taken into
account.

Computer simulations were again used to evaluate
mutation rate estimates based on the observed allelic
variance, and on Eq. (17), ;LS , and its weighted equiv-
alent, ;WLS . In order for ;LS and ;WLS to be reasonably
accurate mutation rate estimates, a spread of divergence
times between populations is required. Thus, for these
simulations, a single population that had previously been
iterated to equilibrium was split seven times at regular
intervals, creating eight populations such that the
phylogenetic tree relating these populations was
maximally imbalanced. The range for all loci was 50, and
the mutation rates ranged from 0.1 to 0.001 among the
loci. The least squares mutation rate estimates were
calculated using DGLS as a measure of time, with no
further iterations. Each data point was replicated 1000
times, and the mean and variance for all 20 loci were
obtained for each of the three estimators of the mutation
rate. The coefficients of variation (CV ) for mutation
rates obtained from the least squares methods are on the
order of double those obtained from the allelic variance
for the mutation rates in the range ;=0.05�0.1 (Fig. 5).
The slight upward trend with smaller mutation rates for
the allelic variance method combined with the slight
downward trend for the weighted least squares method,
mean that they have more similar CVs for smaller
mutation rates. ;WLS has a smaller CV than ;LS for
;<0.07, and when ;=0.01�0.001, it is only slightly
greater than the CVs for the mutation rate estimates from
the allelic variance. In deciding which method to use,
consideration should be given to the sensitivity of allelic
variance to other factors. Perturbations in the equili-
brium distribution of the allelic variance will last longest
for very small N;, while the CVs of the ;WLS mutation
estimates are also most comparable to those from the
allelic variance when mutation rates are small. Thus the
least squares methodology for estimating the mutation
rate appears most appropriate under the conditions
modeled when the estimators are comparable and N; is
small, that is, when N;<0.5 (;<0.01). It should be
noted that while all three methods will improve with
increasing numbers of populations sampled, they may be
differentially sensitive to the phylogenetic relationships
among those populations. For example, the accuracy of

267Microsatellites and Range Constraints



File: 653J 136313 . By:XX . Date:11:06:98 . Time:15:38 LOP8M. V8.B. Page 01:01
Codes: 5516 Signs: 4872 . Length: 54 pic 0 pts, 227 mm

FIG. 5. Coefficients of variation for mutation rates. Mutation rates
were estimated from the allelic variance (V, open squares), or via the
least squares (LS, open circles) or weighted least squares (WLS, filled
circles) procedure. Mutation rates were distributed from 0.1 to 0.001
across the 20 loci in 1000 replicate simulations. The range for all loci
was 50. In each simulation, eight populations were created by splitting
a single population seven times at regular intervals, so that the phylo-
genetic tree relating these populations was maximally unbalanced. The
overall length of the simulation (seven times the length of the splitting
interval) following the first split was 700 generations (;t=0.7�70).

the least squares methods is likely to increase more than
the variance method if larger numbers of closely related
populations are added to the sample.

4. DISCUSSION

The results presented in this paper should be useful to
researchers interested in extending microsatellite analysis
of phylogeny to more divergent populations. Methodol-
ogy is also provided for estimating parameters which
should prove useful in comparing evolutionary models of
microsatellite evolution. The estimation of parameters is
a necessary preliminary step in choosing microsatellites
for extended analyses, and will save the expenditure of
resources on sampling loci which are unlikely to be infor-
mative. While large numbers of microsatellite loci are
needed to achieve an unbiased and accurate distance
over long periods of time, specific questions can be
addressed with fewer, well-chosen loci. The model
analyzed in this paper and in Feldman et al. (1997)
provides a framework for defining what is most impor-
tant in the selection of loci (Fig. 4). It also shows how to
reduce the bias and increase the accuracy in estimating
more distant relationships. Surprisingly, it appears from
Fig. 4 that variation in the range is less of a problem in
this regard than variation in the mutation rate.

The principal factors in determining the length of time
during which a locus will provide accurate information
are the range and the mutation rate. This useful lifetime
of a locus can be defined as the length of time until the
time-weighted accuracy drops below some cutoff. The
cutoff is in some sense arbitrary, but can be envisaged as
the point at which the accuracy of a distance using a
given number of similar loci would drop below one;
at that point such a distance would be nearly useless
phylogenetically. The useful lifetime increases with the
square of the absolute range within which allelic scores
may wander (Fig. 6a). The effect of the mutation rate is
only linear, but mutation rates potentially may vary
more than ranges across loci (Fig. 6b). For moderate
values of N;, the expected maximum distance between
populations for a microsatellite locus decreases as N;
increases, but the initial rate of divergence decreases as
well. Thus, a microsatellite with a range of 50 and a fast
mutation rate of 10&2 would still last 2.5 times longer
than a microsatellite with a range of 10 and a mutation
rate of 10&3. The absence of an independent effect of N;
will only hold up to a certain point, since for a sufficiently
large N; relative to R, equilibrium allelic variances
may be too high to permit diversification, our primary
concern.

It might be argued that the number of microsatellites
necessary for accurate reconstruction of phylogeny is
prohibitive due to the costs of selecting and screening the
microsatellites. Recent genome projects, however, have
been screening microsatellites in prodigious quantities.
At last count, 5,264 (6,580) microsatellites dispersed
across the human (mouse) genome have been charac-
terized (Dietrich et al., 1996; Dib et al., 1996). Due to
their usefulness in mapping, many more are, or soon will
be, available from model organisms such as Drosophila,
maize, and zebrafish, from pathogenic organisms such as
Plasmodium, and from agriculturally useful organisms,
such as cows, sheep, chickens, pigs, tomatoes, soybeans,
and rice (Goldstein and Clark, 1995; Taramino and
Tingey, 1996; Postlethwait et al., 1994; Su and Willems,
1996; Ma et al., 1996. Crawford et al., 1995; Crooijmans
et al., 1996; Rohrer et al., 1996; Broun and Tanksley,
1996; Akkaya et al., 1995; Xiao et al., 1994). With these
large numbers available for sampling, along with recent
improvements in rapid cloning of new microsatellites and
more efficient typing of genotypes (Ostrander et al.,
1992), practical phylogenetics appears quite possible
beyond the subspecies level, though it will entail a more
sophisticated approach than is currently practised.
A serious complication for evolutionary analysis is that
microsatellites will degrade with time. There is reason to
be optimistic, however, that a substantial window of time
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FIG. 6. Useful lifetime of microsatellite loci. The useful lifetime of a microsatellite was measured as the length of time until a particular accuracy
cutoff was reached. The accuracy (slope�standard deviation) of DL was weighted by the amount of time passed, and cutoffs were either 0.1 (circles),
0.2 (squares), or 0.5 (diamonds). These cutoffs correspond to a weighted accuracy of 1.0 for 100, 25, and 4 loci, respectively. In (a), the mutation rate
varies from 0.64 to 0.0032, the range is 20. In (b), the mutation rate is 0.01, the range varies from 10 to 100. Time is measured in units of ;t where
;=0.01.
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may exist before this occurs. Many microsatellites
originally typed in humans are polymorphic throughout
the old world monkeys (Coote and Bruford, 1996), and
recently published reports describe microsatellites lasting
for hundreds of millions of years in sea turtles and fish
(Fitzsimmons et al., 1995; Rico et al., 1996).

It cannot be overemphasized that the number of
loci required to make phylogenetic estimates is large,
even under the assumption of an infinite range. The
requirement is even larger under range constraints.
In the absence of range constraints, when the distance
($+)2 is expected to grow linearly with time, the standard
deviation of single distance estimates is slightly greater
than the distance estimate itself. Since the standard
deviation goes down with the square root of the number
of loci, it is clear that one hundred loci are needed to get
the coefficient of variation down to slightly greater than
0.1. Under a model with range constraints, the standard
deviation of ($+)2 is still slightly greater than its expecta-
tion, but the expectation is asymptotic with time. This
further reduces the resolving power of the distance
measure as time increases. Resolving power at deeper
times can only be increased by increasing the number of
loci. While adding loci with any R and ; will somewhat
reduce the degree to which the distances asymptote or
are variable, resolving power will be increased most by
selectively adding those loci with the greatest accuracy.

A feasible research plan would be to choose a small
number of divergent species and type five to ten indivi-
duals from each for a large number of microsatellite loci
(perhaps in the hundreds) in order to estimate the ranges
of those loci. Preliminary estimates of the relative
mutation rates would be made from the mean allelic
variances at these loci. Further analyses on a large
number of species or populations would then be restricted
to those loci with acceptably large ranges and small
mutation rates. As such datasets become available,
patterns may emerge which would allow a priori selection
of microsatellites for particular projects. For example,
we anticipate that different motif sizes (e.g., dinu-
cleotide, trinucleotide, and tetranucleotide repeats), and
perhaps different motif types (e.g., CA vs. TA), may have
tendencies towards particular range constraints or
mutation rates. If so, specific types of microsatellites can
be used for specific problems, obviating the need for prior
characterization of each locus in every taxon.

The ideal distance measure for use with microsatellites
will depend on the characteristics of the microsatellites
and on the phylogenetic question being addressed. If
range constraints are large, and the separation times
between populations of interest are small, ($+)2 may give
good results both in terms of accuracy and linearity with

time. Allele sharing can be more accurate for extremely
short separation times, but will not be particularly linear.
If separation times are larger, DL is nearly as accurate as
($+)2, and asymptotes more slowly. The least squares
distances, however, will maintain linearity indefinitely as
long as the number of loci is large enough. The least
squares distances are slightly less accurate in those cases
where there is variation in range sizes and no variation
in mutation rate among loci, but when variation in
mutation rate occurs in the presence of range constraints,
DGLS is considerably more accurate than the other
distances for all but the shortest separation times.

Some of the assumptions made in the model analyzed
here may not exactly mimic natural microsatellite
behavior. Actual boundaries may be soft rather than
reflecting, the mutation rate may change with size
(Goldstein and Clark, 1995), or become directionally
biased with size, and locus mutation and death should be
considered. Range constraints have clear and dramatic
effects on the dynamics of microsatellite evolution,
however, and the analysis here has shown that some
degree of compensation can be made for these
constraints. Parameter estimations using these analyses
can also be used to determine how well real-world
microsatellite conform to the expectations of this model
compared to any other established model.
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