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Since the initial work of Jukes and Cantor (1969), a number of procedures have been developed to estimate the
expected number of nucleotide substitutions corresponding to a given observed level of nucleotide differentiation
assuming particular evolutionary models. Unlike the proportion of different sites, the expected number of substi-
tutions that would have occurred grows linearly with time and therefore has had great appeal as an evolutionary
distance. Recently, however, a number of authors have tried to develop improved statistical approaches for generating
and evaluating evolutionary distances (Schéniger and von Haeseler 1993; Goldstein and Pollock 1994; Tajima
and Takezaki 1994). These studies clearly show that the estimated number of nucleotide substitutions is generally
not the best estimator for use in reconstruction of phylogenetic relationships. The reason for this is that there is
often a large error associated with the estimation of this number. Therefore, even though its expectation is correct
(i.e., on average the expected number of substitutions is proportional to time—but see Tajima 1993), it is not
expected to be as useful as estimators designed to have a lower variance.

We (Goldstein and Pollock 1994) and Tajima and
Takezaki (1994) have independently introduced similar
methods of reducing the error associated with estimating
evolutionary distances in the case of the Kimura two-
parameter model, which assumes that the rate of tran-
sition-type substitutions (2a) differs from that of the
transversion type (4B). Both studies noted that there are
two data types present under the Kimura (1980) two-
parameter model—the number of transition substitu-
tions and the number of transversion substitutions—
and that taking a weighted combination of these can
yield a more accurate distance. The two sets of authors
used different methods to obtain their weighted dis-
tances, however, and here we analyze the relationship
of the two methods and their effectiveness for use in
phylogenetic reconstruction.

We (Goldstein and Pollock 1994) used a distance
(least squares distance, LSD) of the form

D, = WS, + WV, (1)

where S, and V, are the estimated expected number of
transition and transversion substitutions at time ¢, re-
spectively (Kimura 1980), and are given by
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S, =2t = =2 log[l — 2P, — Q)]
+ Y log[l — 2Q)],

(2

and

V, = 4Bt = 2 log[l — 2Q], 3)
and P, and @, are the observed transition and transver-
sion differences at time ¢.

We (Goldstein and Pollock 1994) used the method
of generalized least squares to determine the weights,
W,, and W,, that produce a minimum-variance esti-
mator.

Using the same notation, Tajima and Takezaki’s
distance (TATA) can be written as

D, = WII(SI + %) + Wy, g‘l . 4

In their formulation, W5, is not free to vary and is
constantly set to one. Since only W), is free to vary, for
convenience we will hereafter refer to Wy, in their
method simply as W,. In order to find the weight that
results in the most accurate distance, they define an ac-
curacy function as 4, = D}/(V[D,])"?, which reason-
ably compares the phylogenetic signal (slope) to the noise
(variance) at each point in time (see Tajima and Take-
zaki 1994 for a complete motivation of this index). The
value of W, that maximizes A, is taken as the best weight.

Note that the underlying variables used in the two
weighting systems are slightly different. With LSD the
estimates of transition and transversion substitutions are
weighted separately, while with TATA a combination
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of these two is weighted against the transversion estimate
alone. In TATA the transversion estimate is never si-
lenced, but given that transitions usually occur at a faster
rate than transversions, it is rarely critical to silence
transversions, so this difference should be irrelevant.

The important difference between the two methods
comes in the application of the new distances to the
reconstruction of actual phylogenetic trees. For optimal
use in phylogenetic reconstruction, the expectation of
the distances for each taxon pair should be linear with
increasing time of separation. As suggested by the time
subscript on the weights, under both LSD and TATA
each pair of taxa will have different weights (unless two
pairs are equally diverged). This is a problem for both
methods because the expectations of equations (1) and
(4) are not usually linear with time when the optimal
weights are rederived for each taxon pair (Goldstein and
Pollock 1994).

There are two ways around this problem. In LSD
an estimate of the rate ratio (p = a/2p) is used to create
two distances (one based on transition differences and
one based on transversion differences) with the same
expectation. Since the expectations are the same, all
normalized combinations of the distances will also have
this same expectation, allowing an evolutionary distance
that uses different weighted combinations of these two
distances in different taxon pairs. The method of gen-
eralized least squares was used to find optimal normal-
ized weights for each taxon pair. This set of optimal
weights, along with S, ¥, and p, defines LSD. The rate
ratio, p, can be estimated from all M = N(N — 1)/2
nonidentical pairs of taxa, but some of those estimates
are less accurate than others. In the original formulation
of LSD, R = S,/V, was used to estimate p from each
taxon pair. A modified average of the M such estimates,
Rcu, including only those taxon pairs that were not too
distantly or too closely related, was then used. The es-
timation of p may be improved as follows. First, apply
a correction for the bias in the estimation of the ratio of
random variables (Kendall and Stuart 1958); second,
take the M different estimates of p and combine them
into a minimum variance estimate, Ryagr, by weighting
each estimate by the reciprocal of its variance. We make
no effort here to weight by the covariance of the estimates
due to phylogenetic structure. We also noted that the co-
variance expression 6%, = —(a/2B){ Q% [2n(1 — 2Q)*]} was
misprinted earlier (Goldstein and Pollock 1994), but the
correct expression was used in all calculations.

Tajima and Takezaki (1994) took a different ap-
proach. Rather than transform the two component dis-
tances to have a common expectation, they chose a single
optimal weight, Wopr, based on the vector of optimal
weights W= (W, ..., Wy,), where M is the number of
nonidentical taxon pairs and W; is the optimal weight
for taxon pair i. They tested a number of methods for
finding the best overall weight, including the arithmetic
and harmonic means and minimum weight value in W.
They concluded that the minimum weight, Wy, is the

best among those examined. Distance TATA does not
require estimation of p (as does LSD) but suffers in that
a single weight is used for all taxon pairs, ensuring that
a suboptimal weight will be used with all but one of the
taxon pairs. Because of this trade-off, it is not clear a
priori which approach is preferable, and our purpose
here is to examine this question.

In order to compare the two methods, we conducted
computer simulations under the Kimura two-parameter
(1980) model of sequence evolution similar to those we
earlier used (Goldstein and Pollock 1994). Sequences
were 1,000 nucleotides long, and the probabilities of
transition mutations (o) and transversion mutations (23)
were 0.0001 and 0.00004, per site per cycle (equivalent
to generations) for a rate ratio of 2.5, or were 0.0004
and 0.00004 for a rate ratio of 10. The trees used included
eight taxa, were maximally imbalanced (Rohlf et al.
1990; see fig. 1, inset), and were reconstructed using ei-
ther the UPGMA algorithm (Sokal and Michener 1958)
or Saitou and Nei’s (1987) neighbor-joining (NJ) algo-
rithm. Balanced tree structures were also tested, but both
methods were extremely good at reconstructing them,
and the two methods were not differentiable. The
UPGMA reconstructions were evaluated for correctness
of the rooted tree, whereas NJ reconstructions were
evaluated for correctness of the unrooted tree, as NJ
does not automatically root the tree. All simulations
started with branch-length parameters m and n set to
100 cycles (see fig. 1, inset) for the 2.5X rate ratio runs,
and 40 cycles for the 10X runs. Both m and n either
increased simultaneously (figs. 14, l¢, 2a, 2¢), creating
an even expansion of the tree, or only # increased (figs.
1b, 1d, 2b, 2d), thus expanding only the earliest sections
of the tree. Each condition was simulated 1,000 times.
In some of these simulations, particularly with the 10X
rate ratio, the transitions are saturated and can result in
inapplicable cases (i.e., the argument of the first loga-
rithm in eq. [2] becomes negative). In such cases, com-
ponent transition differences were calculated as one-half
a transition below the infinite expectation (that is, P’
= P—0.5/N, and the argument to the log becomes 1/N).
For both distances this results in virtual silencing of S,
the expected number of transition substitutions. For each
replicate of the simulation p was estimated using the
variance-weighting method as described above. For
TATA, we followed all recommendations for maximal
performance, including using Wy for Wopr. We did
not, however, systematically study the many possible
ways to calculate Wopr.

It can be seen that for the 2.5X rate ratio runs with
an even expansion of the tree, the two methods work
equally well with both UPGMA and NJ (fig. 1a, 1¢).
For this tree with eight taxa, LSD determines slightly
(2.5%) more correct trees for some tree lengths using
UPGMA, but for other conditions (and with NJ) differ-
ences are not discernible. It is clear that, even for trees
with so few taxa, LSD does not suffer for having to es-
timate p. In fact, the use of Ryag to estimate p is quite
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F1G. 1.—Behavior of efficiency of tree estimation for different distances when the rate ratio (a/2p) is 2.5. Trees were reconstructed using
UPGMA (a, b) or NI (¢, d). The model tree used for all computer simulations presented is shown inset in 5. Branch-length parameters m and
n were either expanded simultaneously from a starting length of 100 to a length of 1,500 (g, c), or only n was increased from 100 to 2,000 while
m remained constant at 100 (b, d). Molecular distances are our (Goldstein and Pollock 1994) least squares distance method (LSD), Tajima and
Takezaki’s (1994) Wy~ method (TATA), and the individual transition (TSIT) and transversion (TVER) components of Kimura’s (1980) model
(see Goldstein and Pollock 1994 for formulae). Tree length is in arbitrary units that correspond to simulation cycles. For a length of 1,000
cycles, 0.1 transition substitutions and 0.04 transversion substitutions are expected to have occurred per site.

accurate under these conditions; the mean square error
(MSE) of Ryar is generally less than 0.05 in these sim-
ulations (p = 2.5; data not shown). Furthermore, for
some of the trees considered, the MSE of Ryar is a factor
of three lower than that obtained with Rcyt. Likewise,
TATA clearly does not suffer much from having to use
a single weight for all taxa.

In LSD the component distances are weighted dy-
namically with time, whereas in TATA a single overall
weight is found from the individual optimal weights of

the pairwise distances involved, thus using a suboptimal
weight for most of the distances. For some trees, this
difference becomes critical. If establishing the deepest
node in the tree is most problematic and establishing
the structure of other nodes is simple, then TATA using
Wuin can be expected to give good results. This is the
case in the above simulations. In the case where shal-
lower nodes are more difficult to estimate, it might be
expected that the performance of this method will de-
cline. This is demonstrated in figures 15 and 1d, where
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FIG. 2.—Behavior of efficiency of tree estimation for different distances when the rate ratio (a/2p) is 10. Trees were reconstructed using
UPGMA (a, b) or NJ (c, d). The model tree and molecular distances used are the same as in fig. 1. Branch-length parameters m and n were
either expanded simultaneously from a starting length of 40 to a length of 400 (g, ¢), or only » was increased from 40 to 600 while 7 remained
constant at 40 (b, d). Tree length is in arbitrary units that correspond to simulation cycles. For a length of 1,000 cycles, 0.4 transition mutations

and 0.04 transversion mutations are expected to have occurred per site.

the same maximally unbalanced tree with eight taxa is
used as before but only the earliest three epochs are ex-
panded. Here TATA eventually experiences a 15% re-
duction in efficiency using UPGMA relative to LSD,
which continues to correctly determine the middle nodes
as the tree expands. Using NJ, the difference is smaller,
reaching a maximum of 6% for the last five conditions.

The results for the 10X rate ratio run are generally
similar but with some interesting differences. For the
even expansion of the tree (fig. 2a, 2¢), there isup to a
9% dip in the efficiency of TATA in the middle region
relative to LSD using UPGMA but an extended 4%-5%

relative drop (7% at one point) in the efficiency of LSD
using NJ. When only the first three epochs are expanded
(fig. 2b, 2d), results are similar to those with the 2.5X
ratio but somewhat larger. Distance TATA suffers up to
a 51% drop in relative efficiency using UPGMA and up
to a 20% drop using NJ.

Although it is not the purpose of this letter to com-
pare efficiencies of UPGMA and NJ (and in fact they
are not directly comparable, as UPGMA is evaluating
rooted trees while NJ is evaluating unrooted trees), the
differences in relative performance of the two recon-
struction methods with the two distance methods at dif-



ferent points is enlightening. The NJ method uses in-
formation from every distance in calculating the pair of
taxa with the minimum distance, whereas UPGMA does
not. This appears to make NJ sensitive to inaccuracies
in the larger distances, whereas UPGMA is clearly in-
sensitive to them (see, e.g., LSD and TSIT results in fig.
1b and 1d, where the shorter branch lengths remain
constant). Thus, it seems likely that, in the case where
TATA does slightly better with NJ (fig. 2¢), this is because
it is more conservative than LSD in favoring use of the
transversion component, resulting in slightly greater ac-
curacy for the longest distances, particularly with the
larger rate ratio.

Our results do not allow a uniform endorsement
of one distance method over the other. For much of the
tree space evaluated, LSD and TATA are similarly ef-
fective when used in phylogenetic reconstruction. For
balanced trees, which are generally easier to reconstruct,
the two methods were largely indistinguishable (data not
shown). It appears that LSD is preferable, however, for
most cases where problematic nodes are both shallow
and deep in the tree. In this case, TATA must do poorly
on at least one of these sets of nodes. When Wy is
used, it is the shallow nodes that will suffer on recon-
struction. Our use of Ryagr to dynamically weight the
transition and transversion components according to
their variance at specific points in time produces better
results. Depending on the location of problematic nodes
in the tree structure, other methods of computing the
best weight based on the M optimal weights may perform
better than Wy n.

If only one node (or a set of nodes clustered at one
point in time) causes difficulty, then TATA can be ex-
pected to give very similar results to LSD. There is also
a clear interaction between the reconstruction method
and the distance used. All else being equal, the use of
NJ improves the relative performance of TATA, some-
times reversing a lower performance (fig. 2a and 2¢),
although the performance of LSD often remains equiv-
alent or superior despite this effect (fig. 1¢ and 1c, 15
and 1d, and 2b and 2d). Despite the lack of a uniform
advantage of one distance over the other, it would seem
that, at least for the range of conditions studied here,
LSD is a somewhat safer choice than TATA. While there
are conditions where TATA performs slightly (up to 7%)
better, under many other conditions it performs sub-
stantially (up to 50%) worse. The main limitation of
LSD is that it must include enough taxa to allow an
accurate estimate of p, and with only a few taxa this may
not be possible. As we have shown, however, with as
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few as eight taxa, and possibly fewer, this is not a serious
obstacle. The LSD measure has the additional benefit
that it is possible to calculate a variance for the least
squares distance (ignoring the error in the estimate of
p) and use it to combine distances from various loci or
data types according to the least squares method.
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