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of evolution are often neglected. We have demonstrated, for
instance, that population dynamics can strongly influence the
frequency of the variously observed structut®e addition,

the majority of such studies have focused on the infinite-time
distribution of properties under steady-state conditions. In re-
ality, it is likely that many properties of proteins were “frozen
in” during the initial stages of evolution in much the same way
that the genetic code has been fixed. Any analysis should deal
explicitly with the freezing-in process. Secondly, again with
few exceptionsg#15previous studies have tended to concentrate
on the structural aspects of proteins rather than their functional
INTRODUCTION aspects, even though functional concerns represent a major

There has been increased interest in understanding the obSCUrce of selective pressure. We consider these two additional

served properties of proteins in terms of their evolutionary a;lspectsl Of protfeln eV(|)|u_t|on, l;smg Ia_ltt|ce mﬁdels;o smt;late
history. One of the more active approaches involves decipher-t e evolution of populations of proteins as they change from
ing evolutionary histories to obtain information regarding the p_oorly sune(_j random_ sequences (o proteins "%“_‘apted f_or a
biochemistry of specific proteins. A parallel effort involves simple function, the binding of a small prespecified peptide

developing simplified theoretical and computational models to ligand. We find that modeling the early stages of evolution

address the broader biophysics of proteins, examining Suchresults in significant differences between the distribution of
areas as how the need for foldability, stabilit);, and functional- Structures observed in evolutionarily-derived proteins and what

ity can explain some of the properties common to all (or a large would be expe_cted bas_ed on the_|r stea_dy-state properties. In
number of) proteins. These analyses have shown that the to-contrast, we find that incorporating this form of selective
pography of the fithess landscape can have a strong influencePressure for simple functionality does not appreciably change

on the course of evolution as well as on the properties of the the resulting distribution.

resultant organisms. One central concept that has emerged

from this work is the notion of “sequence entropy” or “design- METHODS

ability,” the relative number of genotypes corresponding to a The Model

given phenotype. This concern has led us (and others) to look

at how many sequences correspond to different possible struc-Our protein model consists of a chain of 16 monomers on a

tures and how this number could affect their relative distribu- two-dimensional square lattice, with each monomer located at

tion among biological proteiis® as well as their thermody-  one lattice point. All self-avoiding lattice walks were enumer-

namic propertie§:s.7-13 ated, resulting in 802,075 possible conformations not related by
Studies such as these (with a few exceptions) have had tworotations, reflections, or inversions, of which 69 were maxi-

major limitations. Most of these studies on protein models mally compact (i.e., fitting on a 4« 4 lattice). A contact is

examine the nature of the mapping of sequence to structure andassumed to exist between two residues if they are not co-

how this is affected by the details of the model. The dynamics valently connected but are on adjacent lattice points. There are

important limitations of a two-dimensional model concerning

whether the conformation space is ergo#ie’ While these

Corresponding author: R.A. Goldstein, Department of Chemistry, Univer- |imitations are critical in folding simulations, the thermody-

sity of Michigan, Ann Arbor, MI 48109-1055, USA. namical properties described below involve sums over states

E-mail addressrichardg@umich.edu and should be less affected. For the following thermodynamic

We study the evolution of protein functionality using a

two-dimensional lattice model. The characteristics particu-

lar to evolution, such as population dynamics and early

evolutionary trajectories, have a large effect on the distri-

bution of observed structures. Only subtle differences are
observed between the distribution of structures evolved for
function and those evolved for their ability to form compact

structures. © 2001 by Elsevier Science Inc.
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analysis, we assume that all structures are at equilibrium. We .
should therefore consider the 802,075 conformations as repre- |
senting the ensemble of kinetically accessible states.

We evaluate the energy of the protein in structtfigac-
cording to the formula

16

E(P) = 2 (P, A,D)U,F (1)

w<v

where (4,7, #,7) is the contact potential between amino
acidss{,,” and,” at theuth andth position on the protein
chain, respectively, anUWk is equal to 1 if residueg. andv
come into contact in structur®,, and 0 otherwise. There are

between 0 and 9 intra-protein contacts, with the maximum
number formed only in the 69 maximally-compact structures. T ST
The contact potentials used are a modified set of potentials

statistically determined from real proteins by Miyazawa and _. . . . .
Jernigan (MJ}8 We multiply the interaction potentials by 2 to Flgurg 1 Model .Of a 16-residue two-dlmerls,longl Igtuce
compensate for the reduced number of contacts available toPfOt€in in @ maximally compact conformation binding a
residues on a two-dimensional lattice compared with the three- tetra-peptide ligand. Four intermolecular contacts are
dimensional proteins used to construct the potentials. In addi- formed ({H,Q}, {G,I}, {L,F}, {M,W}).

tion, as the pairwise contact potential is inappropriate for

cystine—cystine covalent bonds, we replace th€ @otential

with the value of the SS potential.

Due to our ability to enumerate the energy of all possible 16
conformations, we can calculate thermodynamic properties ex-E(¥,, B) = >, y(sd,F, AU,
actly. For instance, the probability that a protein is in structure p<v
S is
16 4
exd — E(F/KT] + 2 2 v, UL, (5)
P(F) = ) (2) =1 =1
Zioig ®
and theAG for folding into that structure is where the first sum is the energy of the protein in its confor-
mation (identical to Equation 1) and the second sum represents
B exd — E(F)/KT] the interaction between amino acidﬁf in the protein and
AGoiging(F1) = — kT In Zi — exf — E(F/kT] | d," in the ligand;U,,,*' = 1 if these two amino acids are in

contact. The modified Miyazawa-Jernigan potential is used for
both the intraprotein and protein—ligand interactions. Note that

whereZ,,4 is the partition function, given by because we consider the total energy of the ligand—protein
combination, it is possible that binding of the ligand can alter
Ziga = 2, expl — E(F)/KT] (4) the stability of the protein in its folded state.
k Assuming that the protein is dilute, the equilibrium proba-

bility of the protein binding the peptide is

andkTis 0.6 kcal mol'* (corresponding to room temperature).
We can also calculate the total probability that the protein is Poinding =
compact by summing the respective probability of being in any
of the 69 compact conformations. exXf ASigand K12k exd — E(Fw, B)/KT]

Although protein function can be very complex and infli-exd— E(%,)/kT] + exd ASgand KIZ i) expl — E(F\, B)/KT]’
enced by many different factors, one common aspect of func-
tionality involves binding ligands. To model the binding of a (6)
ligand to a protein, we use a tetra-peptide as the ligand and
allow it to contact any side of a compact protein with each whereZ, , exp[—E(¥,, %,)/kT] includes the sum over all pos-
residue of the peptide in contact with one residue on the sible structures with bound ligand calculated with Equation 5;
protein, as shown in Figure 1. For simplicity we assume that 3, exp[—E(%)/kT] involves the sum over all structures of the
the protein must be in a compact conformation to bind a ligand. protein with no bound ligand calculated with Equation 1; and
There are eight binding sites per compact conformation (each ASiy,,qis the concentration-dependent change in the entropy of
conformation has four sides, and there are two directions the the ligand upon binding. In the weak-binding limit we can
ligand can face), so there are 69 4 X 2 = 552 possible neglect the second term in the denominator and calculate the
combinations of protein conformation and binding site. The concentration-independent relative probability of a protein
energy of a protein in structurg, with the peptide bound at  binding a ligand. In this limit, the relative probability of a
binding site®, is modeled as bound peptide is given by
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Figure 2. Time-course of various parameters for a typical simulation with Fitness equRl,tQ.ciness(—) the average
probability that the protein is in some compact conformation;) the average probability that the protein is in the compact
conformation of lowest energy; and (- - ) the effective number of compact states present in the population.

i expl — E(Fy, BIKT] tion. Our first evolutionary run involves investigating the effect

Phinding * S, exd — EFo/KT] (7) of such population adaptation for a specifically structural fit-

ness criterion. One aspect of protein viability is that proteins
where the proportionality constant is just eXff,.n/K]- must be able to form a well-ordered compact state to resist such
processes as proteolysis and aggregation. For our first evolu-

Calculating Protein Designabilities tionary run, we ignore protein functionality and only consider

the ability of the protein to form such a compact state. We start
As described in the introduction, an important parameter for \yith a population of 1,000 random protein sequences. At each
each structuref, is the designability2 (), defined as the  generation, a given number of random mutations are made to
relative fraction of viable sequences that will successfully fold these sequences; the total number of mutations is chosen from
into that particular conformation. We define as viable any 5 poisson distribution so that there are an average of 20
sequence with positive stability, that i8G,ging(fi) < O. mutations in the population per generation. We then calculate
Designabilities were calculated by choosing approximately 20 the total probability of each of the various sequences forming
billion sequences at random, finding their ground-state struc- g compact StructurePlompactneds Y taking the sum oP(%,)
tures, and evaluatingGy,qing(#1). There are a number of pairs  gyer all compact states. This probability is treated as the fitness
of compact structures that can be interconverted by switching of that sequence. To implement the evolutionary procedure, the
the N and C termini of the protein chain; these structures 3 000 proteins in the next generation are randomly selected
should have the same designabilities. To provide better statis-(with replacement) from the current generation of proteins so
tiCS, the designabilities of these states (aS well as the occupanthat the probabmty of any sequence being chosen is propor-
cies, defined below) were averaged over both members of thetignal to that Protein’sPompacinessvalue. 10,000 runs were
pair. In spite of this generous viability requirement, the large made with different initial sequences, with each simulation
number of noncompact conformations and the resulting en- lasting 1,000 generations. We then computed the occupancy,
tropy of the unfolded state results in only 0.00003% of all @ . (%) defined as the average fraction of all of the protein
sequences being sufficiently stable, with 5,765 viable protein sequences resulting from these simulations that fold into struc-
sequences found. ture &,..

Evolution for Compactness Evolution for Ligand Binding

As emphasized above, it is important to consider explicitly the To study how the requirements for functionality affect the
evolution of populations during the different stages of evolu- evolutionary process, we evolve a protein population to bind a
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Figure 3.Time-course of various parameters for a typical simulation with Fithess qu’g‘-L%gTSGL. Top graph: (—) the average

relative probability of the peptide being bound by the prot€ig, (., > in arbitrary units; (- - ) the contribution taPyging -

of the current most likely binding site and conformation. Bottom graph: (—) the average probability that the protein in its unbounc
state is in a compact conformation; (- - 5) the effective number of compact states present in the population.

prespecified ligand. As before, we start with a population of ation corresponds to the value®f;,qing Calculated with Equa

1,000 random proteins. The same process of random mutationtion 7. We perform 10,000 runs, each with a different ligand
and random selection is implemented, but this time the relative selected at random; in addition, we perform an additional
probability of any sequence being selected for the next gener-10,000 runs with each of three particular ligands: QIFW,
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Figure 4. A: Correlation between occupancy for evolutionary trajectories with compaction as the fitness criéggigr,X

and designability ). B: Correlation betweei, 4 and @bmding'a”d‘m, the occupancy when fitness is given by the ability
to bind a random ligand. Error bars represent expected statistical errors.
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Figure 5. Correlation between occupanGy;,qing for evolutionary trajectories with ligand binding as the fitness criterion for
(A) random ligands, (B) QIFW, (C) TSGL, and (D) GKSV, compared with designatiligrror bars represent expected
statistical errors.

TSGL, and GKSV. We again compute the occupaﬁgydmgx organism becomes adapted for the current characteristics of
(%) (X = random, QIFW, TSGL, or GKSV), defined as the this particular biomolecule, so changes in these characteristics
fraction of all of the protein sequences resulting from each of result in misadaptation of the rest of the organism. While this

these simulations that fold into structug. is likely the reason for the stability of the genetic code, this

effect is obviously absent from the current simulations. The

RESULTS AND DISCUSSION second effect is based on our previous work, which showed
] ] that as selective pressure increases, changes in structure greatly

Structures Freeze-in Quickly slow downg® In the beginning stages of the simulation, each

aprotein sequence is competing against other poorly adapted
sequences. As the simulation progresses, the other members of
the population become increasingly adapted, so that the selec-
tive pressure is stronger. As a result, it becomes more difficult
to form the less-fit sequences that are in-between structures,
and structural change ceases. Comparison of the changgs in
with tendency for compaction and binding ability demonstrate

Figure 2 shows the time-course of various parameters for
typical simulation WherP ,m,acinesdS Used as the fitness eri
terion; Figure 3 shows a corresponding plot for a typical
simulation wherePy,qing >C " represents the fitness. One of the
guantities included in these graphsjishe effective number of

compact states, given by

1 -t that relatively little adaptation is necessary before the structure
n=[2 TRy V2| (8) is frozen in.
I () While population-wide structural changes in later genera-
S P(Fx)

tions are rare, this is not to say that such changes are nonex-
whereP(¥,) is averaged over all of the proteins in the pepu istent. In the S|mulalt|on shown in Figure 2, an ensemble qf
lation and both sums are over all compact conformatians. sequences that fold into one compact structure is replaced with
1 if only one compact state is occupied, and is equal to the total @1 €nsemble of sequences that fold into a new structure, ap-
number of compact states if all are equally occupiggener- ~ Proximately at generation 575.

ally decreases to approximately 1 within the first tens of

generations, indicating that the population quickly decides on a Occupancies are Highly Correlated with

native state that is preserved for the remainder of the simula- ; T

. . o . Designabilities

tion. This represents the freezing-in effect described above.

There are two possible reasons for this effect in the evolution On the left side of Figure 4 we compare the relationship
of natural biomolecules. One reason is that the rest of the between the occupanci€g,qin(¥\) observed with simulations
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Figure 6. Zipf's Law plot. The logarithms of the designabilities and occupancies ranked in descendingdffgr(—);
Otoding (Fi) (-+-+); @bindingrandom i) ---) ©bindingQ”:W (Fi) (=) @bindingTSGL(Efk) (===); GbindingGKSV(yk) (===

of a population adapted to folding into a compact state with the the criterion for viability becomes more stringéftin the

designability 9(%,). Osoaing(Fi) is highly (but imperfectly)
correlated with designability, with a correlation coefficient of
0.90. This suggests, similarly to our earlier conclusitrthat

current model, with only 0.00003% of all sequences viable, we
expect a highly uneven distribution with most structures of
extremely small designability and with a few highly-designable

while designability is an important element in understanding structures. This is exactly what is observed. In particular, six
the distribution of observed protein structures, this distribution structures account for more than 44% of all of the designable
can be modified by the interaction of population effects with sequences. The distribution of occupancies [0QHing(F1)

the underlying topology of the fithess landscape.

Values ofOpnging(Fi) for the random and specified ligands
are compared withiy,4ing(F\) in Figure 4 and with designabil
ity 9(%,) in Figure 5.The correlation coefficient between
Opinging " “°",) for proteins evolved for binding random: li
gands and designabilitiés(¥,) is 0.81; correlations between
Opinaind ) and (%) for specific ligands have correlation

coefficients 0.66, 0.87, and 0.84 for QIFW, TSGL, and GKSV,

and Oyingind )] is also shown in Figure 6. In spite of these
high correlation coefficients between designability and occu-
pancy, the distribution of designabilities and occupancies are
quite different, with bothOygging(Fi) and OpingindF) More
evenly distributed among the structures thHa(tf,). This is
somewhat surprising, as our earlier results with steady-state
population dynamics showed that population dynamics make
the distribution of occupancies more uneven than the distribu-

respectively. These values are all comparable with the corre-tion of designabilities? The difference between these two

lation betweery,ging(Fi) and (). As shown in Figure 4,
Opinging " “°,) for the random ligands an€l,qing(¥:) are
extremely well correlated, with a correlation coefficient of

simulations can be explained by considering Figure 2 and
Figure 3. In the previous study, we allowed the protein popu-
lation to equilibrate among all of the various possible struc-

0.95. This shows that in this model the distribution of structures tures. Sequences that folded into structures that had smaller
is not greatly affected by the need for functionality, and that the designabilities would be less resistant to mutations, and would
need for compactness combined with the designability most be correspondingly less frequent. In the current simulations, we

influence the distribution of structures.

Distribution of Designabilities Affected by
Freezing-in of Structures

started with a set of sequences with low fitness. As the simu-
lation proceeded, the average level of the fitness increased, so
that the fitness required for reproducing continually increased.
As a result, the volume of the sequence space available to each
structure continually decreased as each sequence had to com-

Figure 6 shows the distribution of designabilities of the various pete with more and more fit members of the evolving popula-
compact structures. In previous results, we showed that thetion. As described above, the folded structure is decided quite
distribution of designabilities becomes increasingly uneven as early in the simulation. As a result, the probability of each of
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