
Evolution of functionality in lattice
proteins

Paul D. Williams,* David D. Pollock,† and Richard A. Goldstein*‡

*Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
†Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
‡Biophysics Research Division, University of Michigan, Ann Arbor, MI, USA

We study the evolution of protein functionality using a
two-dimensional lattice model. The characteristics particu-
lar to evolution, such as population dynamics and early
evolutionary trajectories, have a large effect on the distri-
bution of observed structures. Only subtle differences are
observed between the distribution of structures evolved for
function and those evolved for their ability to form compact
structures. © 2001 by Elsevier Science Inc.

INTRODUCTION

There has been increased interest in understanding the ob-
served properties of proteins in terms of their evolutionary
history. One of the more active approaches involves decipher-
ing evolutionary histories to obtain information regarding the
biochemistry of specific proteins. A parallel effort involves
developing simplified theoretical and computational models to
address the broader biophysics of proteins, examining such
areas as how the need for foldability, stability, and functional-
ity can explain some of the properties common to all (or a large
number of) proteins. These analyses have shown that the to-
pography of the fitness landscape can have a strong influence
on the course of evolution as well as on the properties of the
resultant organisms. One central concept that has emerged
from this work is the notion of “sequence entropy” or “design-
ability,” the relative number of genotypes corresponding to a
given phenotype. This concern has led us (and others) to look
at how many sequences correspond to different possible struc-
tures and how this number could affect their relative distribu-
tion among biological proteins1–6 as well as their thermody-
namic properties.3,5,7–13

Studies such as these (with a few exceptions) have had two
major limitations. Most of these studies on protein models
examine the nature of the mapping of sequence to structure and
how this is affected by the details of the model. The dynamics

of evolution are often neglected. We have demonstrated, for
instance, that population dynamics can strongly influence the
frequency of the variously observed structures.12 In addition,
the majority of such studies have focused on the infinite-time
distribution of properties under steady-state conditions. In re-
ality, it is likely that many properties of proteins were “frozen
in” during the initial stages of evolution in much the same way
that the genetic code has been fixed. Any analysis should deal
explicitly with the freezing-in process. Secondly, again with
few exceptions,14,15previous studies have tended to concentrate
on the structural aspects of proteins rather than their functional
aspects, even though functional concerns represent a major
source of selective pressure. We consider these two additional
aspects of protein evolution, using lattice models to simulate
the evolution of populations of proteins as they change from
poorly suited random sequences to proteins adapted for a
simple function, the binding of a small prespecified peptide
ligand. We find that modeling the early stages of evolution
results in significant differences between the distribution of
structures observed in evolutionarily-derived proteins and what
would be expected based on their steady-state properties. In
contrast, we find that incorporating this form of selective
pressure for simple functionality does not appreciably change
the resulting distribution.

METHODS

The Model

Our protein model consists of a chain of 16 monomers on a
two-dimensional square lattice, with each monomer located at
one lattice point. All self-avoiding lattice walks were enumer-
ated, resulting in 802,075 possible conformations not related by
rotations, reflections, or inversions, of which 69 were maxi-
mally compact (i.e., fitting on a 43 4 lattice). A contact is
assumed to exist between two residues if they are not co-
valently connected but are on adjacent lattice points. There are
important limitations of a two-dimensional model concerning
whether the conformation space is ergodic.16,17 While these
limitations are critical in folding simulations, the thermody-
namical properties described below involve sums over states
and should be less affected. For the following thermodynamic
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analysis, we assume that all structures are at equilibrium. We
should therefore consider the 802,075 conformations as repre-
senting the ensemble of kinetically accessible states.

We evaluate the energy of the protein in structure6k ac-
cording to the formula

E~6k! 5 O
m,n

16

g~!m
P, !n

P!Umn
k (1)

where g(!m
P, !n

P) is the contact potential between amino
acids!m

P and!n
P at themth andnth position on the protein

chain, respectively, andUmn
k is equal to 1 if residuesm andn

come into contact in structure6k, and 0 otherwise. There are
between 0 and 9 intra-protein contacts, with the maximum
number formed only in the 69 maximally-compact structures.
The contact potentials used are a modified set of potentials
statistically determined from real proteins by Miyazawa and
Jernigan (MJ).18 We multiply the interaction potentials by 2 to
compensate for the reduced number of contacts available to
residues on a two-dimensional lattice compared with the three-
dimensional proteins used to construct the potentials. In addi-
tion, as the pairwise contact potential is inappropriate for
cystine–cystine covalent bonds, we replace the C™C potential
with the value of the S™S potential.

Due to our ability to enumerate the energy of all possible
conformations, we can calculate thermodynamic properties ex-
actly. For instance, the probability that a protein is in structure
6k is

P~6k! 5
exp@ 2 E~6k!/kT#

Zfold
, (2)

and theDG for folding into that structure is

DGfolding~6k! 5 2 kT lnF exp@ 2 E~6k!/kT#

Zfold 2 exp@ 2 E~6k!/kT#G ,

(3)

whereZfold is the partition function, given by

Zfold 5 O
k

exp@ 2 E~6k!/kT# (4)

andkT is 0.6 kcal mol21 (corresponding to room temperature).
We can also calculate the total probability that the protein is
compact by summing the respective probability of being in any
of the 69 compact conformations.

Although protein function can be very complex and influ-
enced by many different factors, one common aspect of func-
tionality involves binding ligands. To model the binding of a
ligand to a protein, we use a tetra-peptide as the ligand and
allow it to contact any side of a compact protein with each
residue of the peptide in contact with one residue on the
protein, as shown in Figure 1. For simplicity we assume that
the protein must be in a compact conformation to bind a ligand.
There are eight binding sites per compact conformation (each
conformation has four sides, and there are two directions the
ligand can face), so there are 693 4 3 2 5 552 possible
combinations of protein conformation and binding site. The
energy of a protein in structure6k with the peptide bound at
binding site@l is modeled as

E~6k, @ l! 5 O
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where the first sum is the energy of the protein in its confor-
mation (identical to Equation 1) and the second sum represents
the interaction between amino acids!m

P in the protein and
!l

L in the ligand;Uml
k,l 5 1 if these two amino acids are in

contact. The modified Miyazawa-Jernigan potential is used for
both the intraprotein and protein–ligand interactions. Note that
because we consider the total energy of the ligand–protein
combination, it is possible that binding of the ligand can alter
the stability of the protein in its folded state.

Assuming that the protein is dilute, the equilibrium proba-
bility of the protein binding the peptide is

Pbinding 5

exp@DSligand/k#Sk,l exp@ 2 E~6k, @ l!/kT#

S l exp@2 E~6k!/kT# 1 exp@DSligand/k#Sk,l exp@ 2 E~6k, @ l!/kT#
,

(6)

whereSk,l exp[2E(6k, @l)/kT] includes the sum over all pos-
sible structures with bound ligand calculated with Equation 5;
Sl exp[2E(6k)/kT] involves the sum over all structures of the
protein with no bound ligand calculated with Equation 1; and
DSligand is the concentration-dependent change in the entropy of
the ligand upon binding. In the weak-binding limit we can
neglect the second term in the denominator and calculate the
concentration-independent relative probability of a protein
binding a ligand. In this limit, the relative probability of a
bound peptide is given by

Figure 1. Model of a 16-residue two-dimensional lattice
protein in a maximally compact conformation binding a
tetra-peptide ligand. Four intermolecular contacts are
formed ({H,Q}, {G,I}, {L,F}, {M,W}).
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Pbinding }
Sk,l exp@ 2 E~6k, @l!/kT#

Sl exp@ 2 E~6k!/kT#
, (7)

where the proportionality constant is just exp[DSligand/k].

Calculating Protein Designabilities

As described in the introduction, an important parameter for
each structure6k is the designability,$(6k), defined as the
relative fraction of viable sequences that will successfully fold
into that particular conformation. We define as viable any
sequence with positive stability, that is,DGfolding(6k) , 0.
Designabilities were calculated by choosing approximately 20
billion sequences at random, finding their ground-state struc-
tures, and evaluatingDGfolding(6k). There are a number of pairs
of compact structures that can be interconverted by switching
the N and C termini of the protein chain; these structures
should have the same designabilities. To provide better statis-
tics, the designabilities of these states (as well as the occupan-
cies, defined below) were averaged over both members of the
pair. In spite of this generous viability requirement, the large
number of noncompact conformations and the resulting en-
tropy of the unfolded state results in only 0.00003% of all
sequences being sufficiently stable, with 5,765 viable protein
sequences found.

Evolution for Compactness

As emphasized above, it is important to consider explicitly the
evolution of populations during the different stages of evolu-

tion. Our first evolutionary run involves investigating the effect
of such population adaptation for a specifically structural fit-
ness criterion. One aspect of protein viability is that proteins
must be able to form a well-ordered compact state to resist such
processes as proteolysis and aggregation. For our first evolu-
tionary run, we ignore protein functionality and only consider
the ability of the protein to form such a compact state. We start
with a population of 1,000 random protein sequences. At each
generation, a given number of random mutations are made to
these sequences; the total number of mutations is chosen from
a Poisson distribution so that there are an average of 20
mutations in the population per generation. We then calculate
the total probability of each of the various sequences forming
a compact structure (Pcompactness) by taking the sum ofP(6k)
over all compact states. This probability is treated as the fitness
of that sequence. To implement the evolutionary procedure, the
1,000 proteins in the next generation are randomly selected
(with replacement) from the current generation of proteins so
that the probability of any sequence being chosen is propor-
tional to that protein’sPcompactnessvalue. 10,000 runs were
made with different initial sequences, with each simulation
lasting 1,000 generations. We then computed the occupancy,
2folding(6k), defined as the average fraction of all of the protein
sequences resulting from these simulations that fold into struc-
ture 6k.

Evolution for Ligand Binding

To study how the requirements for functionality affect the
evolutionary process, we evolve a protein population to bind a

Figure 2. Time-course of various parameters for a typical simulation with Fitness equal toPcompactness: (—) the average
probability that the protein is in some compact conformation; (. . .) the average probability that the protein is in the compact
conformation of lowest energy; and (- - -)h, the effective number of compact states present in the population.
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prespecified ligand. As before, we start with a population of
1,000 random proteins. The same process of random mutation
and random selection is implemented, but this time the relative
probability of any sequence being selected for the next gener-

ation corresponds to the value ofPbinding calculated with Equa-
tion 7. We perform 10,000 runs, each with a different ligand
selected at random; in addition, we perform an additional
10,000 runs with each of three particular ligands: QIFW,

Figure 3.Time-course of various parameters for a typical simulation with Fitness equal toPbinding
TSGL. Top graph: (—) the average

relative probability of the peptide being bound by the protein (Pbinding
TSGL) in arbitrary units; (. . .) the contribution toPbinding

TSGL

of the current most likely binding site and conformation. Bottom graph: (—) the average probability that the protein in its unbound
state is in a compact conformation; (- - -)h, the effective number of compact states present in the population.

Figure 4. A: Correlation between occupancy for evolutionary trajectories with compaction as the fitness criterion (2folding)
and designability ($). B: Correlation between2folding and 2binding

random, the occupancy when fitness is given by the ability
to bind a random ligand. Error bars represent expected statistical errors.
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TSGL, and GKSV. We again compute the occupancy2binding
X

(6k) (X 5 random, QIFW, TSGL, or GKSV), defined as the
fraction of all of the protein sequences resulting from each of
these simulations that fold into structure6k.

RESULTS AND DISCUSSION

Structures Freeze-in Quickly

Figure 2 shows the time-course of various parameters for a
typical simulation whenPcompactnessis used as the fitness cri-
terion; Figure 3 shows a corresponding plot for a typical
simulation wherePbinding

TSGL represents the fitness. One of the
quantities included in these graphs ish, the effective number of
compact states, given by

h 5 1O6k

1

S P~6k!

S6k9 P~6k9!
D 22

21

, (8)

whereP(6k) is averaged over all of the proteins in the popu-
lation and both sums are over all compact conformations.h 5
1 if only one compact state is occupied, and is equal to the total
number of compact states if all are equally occupied.h gener-
ally decreases to approximately 1 within the first tens of
generations, indicating that the population quickly decides on a
native state that is preserved for the remainder of the simula-
tion. This represents the freezing-in effect described above.
There are two possible reasons for this effect in the evolution
of natural biomolecules. One reason is that the rest of the

organism becomes adapted for the current characteristics of
this particular biomolecule, so changes in these characteristics
result in misadaptation of the rest of the organism. While this
is likely the reason for the stability of the genetic code, this
effect is obviously absent from the current simulations. The
second effect is based on our previous work, which showed
that as selective pressure increases, changes in structure greatly
slow down.8,9 In the beginning stages of the simulation, each
protein sequence is competing against other poorly adapted
sequences. As the simulation progresses, the other members of
the population become increasingly adapted, so that the selec-
tive pressure is stronger. As a result, it becomes more difficult
to form the less-fit sequences that are in-between structures,
and structural change ceases. Comparison of the changes inh
with tendency for compaction and binding ability demonstrate
that relatively little adaptation is necessary before the structure
is frozen in.

While population-wide structural changes in later genera-
tions are rare, this is not to say that such changes are nonex-
istent. In the simulation shown in Figure 2, an ensemble of
sequences that fold into one compact structure is replaced with
an ensemble of sequences that fold into a new structure, ap-
proximately at generation 575.

Occupancies are Highly Correlated with
Designabilities

On the left side of Figure 4 we compare the relationship
between the occupancies2folding(6k) observed with simulations

Figure 5. Correlation between occupancy2binding for evolutionary trajectories with ligand binding as the fitness criterion for
(A) random ligands, (B) QIFW, (C) TSGL, and (D) GKSV, compared with designability$. Error bars represent expected
statistical errors.
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of a population adapted to folding into a compact state with the
designability $(6k). 2folding(6k) is highly (but imperfectly)
correlated with designability, with a correlation coefficient of
0.90. This suggests, similarly to our earlier conclusions,12 that
while designability is an important element in understanding
the distribution of observed protein structures, this distribution
can be modified by the interaction of population effects with
the underlying topology of the fitness landscape.

Values of2binding(6k) for the random and specified ligands
are compared with2folding(6k) in Figure 4 and with designabil-
ity $(6k) in Figure 5. The correlation coefficient between
2binding

random(6k) for proteins evolved for binding random li-
gands and designabilities$(6k) is 0.81; correlations between
2binding(6k) and $(6k) for specific ligands have correlation
coefficients 0.66, 0.87, and 0.84 for QIFW, TSGL, and GKSV,
respectively. These values are all comparable with the corre-
lation between2folding(6k) and$(6k). As shown in Figure 4,
2binding

random(6k) for the random ligands and2folding(6k) are
extremely well correlated, with a correlation coefficient of
0.95. This shows that in this model the distribution of structures
is not greatly affected by the need for functionality, and that the
need for compactness combined with the designability most
influence the distribution of structures.

Distribution of Designabilities Affected by
Freezing-in of Structures

Figure 6 shows the distribution of designabilities of the various
compact structures. In previous results, we showed that the
distribution of designabilities becomes increasingly uneven as

the criterion for viability becomes more stringent.19 In the
current model, with only 0.00003% of all sequences viable, we
expect a highly uneven distribution with most structures of
extremely small designability and with a few highly-designable
structures. This is exactly what is observed. In particular, six
structures account for more than 44% of all of the designable
sequences. The distribution of occupancies [both2folding(6k)
and 2binding(6k)] is also shown in Figure 6. In spite of these
high correlation coefficients between designability and occu-
pancy, the distribution of designabilities and occupancies are
quite different, with both2folding(6k) and 2binding(6k) more
evenly distributed among the structures than$(6k). This is
somewhat surprising, as our earlier results with steady-state
population dynamics showed that population dynamics make
the distribution of occupancies more uneven than the distribu-
tion of designabilities.12 The difference between these two
simulations can be explained by considering Figure 2 and
Figure 3. In the previous study, we allowed the protein popu-
lation to equilibrate among all of the various possible struc-
tures. Sequences that folded into structures that had smaller
designabilities would be less resistant to mutations, and would
be correspondingly less frequent. In the current simulations, we
started with a set of sequences with low fitness. As the simu-
lation proceeded, the average level of the fitness increased, so
that the fitness required for reproducing continually increased.
As a result, the volume of the sequence space available to each
structure continually decreased as each sequence had to com-
pete with more and more fit members of the evolving popula-
tion. As described above, the folded structure is decided quite
early in the simulation. As a result, the probability of each of

Figure 6. Zipf’s Law plot. The logarithms of the designabilities and occupancies ranked in descending order.$(6k) (—);
2folding (6k) (z z z z ); 2binding

random(6k) (- - -); 2binding
QIFW (6k) (z–z–); 2binding

TSGL(6k) (–zz–zz); 2binding
GKSV(6k) (––z––z).
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the folded states was decided when the overall fitness required
for reproduction was quite low, and a larger fraction of all
sequences was viable. Low required values of fitness generally
result in a more equitable distribution of proteins among the
various structures.19

CONCLUSION

Proteins are the result of a long evolutionary process. We can
gain much insight into the nature of proteins by explicitly
modeling the manner in which these proteins originated. We
have described preliminary work in this direction, where we
model the evolution of populations of proteins as they evolve
from random, nonadapted biopolymers to compact, functional
proteins. While the functionality used in this model (as well as
the protein model itself) is highly abstracted and simplified, the
results are highly suggestive. In previous work, we assumed
that selective pressure for functionality and for stability and
foldability were somewhat unrelated, so that a protein that
successfully folded into one structure would be as likely to be
functional as a protein that successfully folded into an alterna-
tive structure. We find that including functionality in this
model does not greatly alter the distribution of observed struc-
tures. We do, however, observe that the distribution is affected
by the population aspects. We also demonstrate that it is
important to consider the evolutionary epoch at which nature
chose properties such as the distribution of structures, and to
recognize that this situation may be poorly represented by the
current circumstances. This also suggests that while sequences
are rather accommodating to change, structures have been
largely determined and are far less mutable.
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