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Abstract: It has been known for some time that many proteins are marginally stable. This has inspired several explanations. Having 
noted that the functionality of many enzymes is correlated with subunit motion, flexibility, or general disorder, some have suggested 
that marginally stable proteins should have an evolutionary advantage over proteins of differing stability. Others have suggested that 
stability and functionality are contradictory qualities, and that selection for both criteria results in marginally stable proteins, 
optimised to satisfy the competing design pressures. While these explanations are plausible, recent research simulating the evolution 
of model proteins has shown that selection for stability, ignoring any aspects of functionality, can result in marginally stable proteins 
because of the underlying makeup of protein sequence-space. We extend this research by simulating the evolution of proteins, using a 
computational protein model that equates functionality with binding and catalysis. In the model, marginal stability is not required for 
ligand-binding functionality and we observe no competing design pressures. The resulting proteins are marginally stable, again 
demonstrating that neutral evolution is sufficient for explaining marginal stability in observed proteins. 
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Introduction 
It has been repeatedly observed that a high proportion of globular proteins are marginally stable under 
physiological conditions, with a ΔGfolding of about -5 to -10 kcal/mol. (Brandts 1967; Privalov and 
Khechinashvili 1974; Savage et al. 1993; Ruvinov et al. 1997; Vogl et al. 1997; Giver et al. 1998). This is in 
spite of several factors that suggest that stable proteins might have advantages over marginally stable proteins. 
For instance, flexible proteins may be less resistant to proteolysis (Fontana, Polverino de Laureto, and De 
Filippis 1993; Hubbard, Eisenmenger, and Thornton 1994; Fontana et al. 1997; Hubbard, Beynon, and 
Thornton 1998), denaturation (Wagner and Wuthrich 1979), detrimental conformational change (Carrell and 
Lomas 1997; Dobson 2001; Bucciantini et al. 2002), aggregation (Lomas and Carrell 2002), and loss of active-
site integrity. In addition, binding between less stable and more flexible proteins and their corresponding 
ligands requires strong binding interactions. More stable proteins do not need such strong binding energies 
because they lose less entropy upon binding (Schulz 1979). These consequences of higher stability might be 
expected to increase the evolutionary success of organisms containing stabilised forms of these proteins, 
suggesting that highly stable proteins should be more common. 

The fact that most proteins are not highly stable suggests that other factors are involved, and several 
hypotheses have been developed to explain this discrepancy. Most of these hypotheses centre on various 
reasons why marginally stable proteins would have a selective advantage over more stable proteins. For 
instance, it has been suggested that proteins have evolved towards marginal stability in order to function, 
suggesting that there is a narrow range of stability consistent with functionality (Rasmussen et al. 1992; Tsou 
1998; Zavodszky et al. 1998). There are several reasons why functionality might be limited to proteins of 
marginal stability. Marginally stable proteins might be more flexible (Wagner and Wuthrich 1979; Tang and 
Dill 1998), increasing functionality by enabling the formation of strong binding interactions with specific 
ligands or by providing flexibility needed for conformational change (Lipscomb 1970; Artymiuk et al. 1979; 
Frauenfelder, Petsko, and Tsernoglou 1979; Wrba et al. 1990; Varley and Pain 1991; Daniel, Dines, and Petach 
1996; Zavodszky et al. 1998; Daniel and Cowan 2000). It has also been suggested that marginal stability may 
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be advantageous because ligand binding with 
marginally stable proteins is comparatively difficult. 
Binding affinities and specificities of less stable 
proteins might be more readily adjusted by mutation, 
phosphorylation or other processes, or selectivity 
might be enhanced by allowing binding only in the 
presence of specific interactions (Dunker et al. 1998; 
Wright and Dyson 1999; Dunker and Obradovic 
2001; Dunker and others 2001; Namba 2001). In 
addition, the physiological importance of marginal 
stability might involve considerations other than 
maximizing functionality or selectivity. For instance, 
unstable proteins might provide more rapid turnover 
than stable proteins. 

A second class of explanations involves the 
hypothesis that marginal stability is the result of a 
trade-off between functionality and stability, that the 
constraints on the amino acids imposed by 
functionality reduce the opportunities to produce a 
highly-stable protein resulting in a negative 
correlation between functionality and stability. This 
could result if functionality required specific amino 
acids at functionally-important locations that were 
incompatible with high stability, so that large 
numbers of possible sequences, including those with 
high stability, would be excluded from the 
evolutionary dynamics. It has been observed, for 
instance, that mutations increasing protein stability 
and activity are much more rare than mutations 
increasing either separately (Alber and Wozniak 
1985; Bryan et al. 1986; Liao, McKenzie, and 
Hageman 1986; Shoichet et al. 1995), although the 
presence of mutations that increase both (Giver et al. 
1998) indicates that functionality and stability are 
not mutually exclusive. If this trade-off holds for all 
protein sequences, marginal stability is prevalent 
because it provides the best balance between the 
sequences that result in stability and functionality. 

These explanations generally arise from an 
‘adaptationist’ paradigm, which is to say that the 
observation of marginal stability in proteins requires 
an explanation of how this contributes to the 
reproductive fitness of the organism, either as a 
direct adaptation or as optimization given 
constraints. Random events and processes, however, 
are important factors in the dynamics of evolution 
and can influence the characters that result (Sueoka 

1962; Kimura 1968; King and Jukes 1969). Gould 
and Lewontin have emphasised the importance of 
examining possible alternatives to adaptationist 
selection (Gould and Lewontin 1979). Specifically, 
they stress that the present usefulness of a character 
may belie its origins, so that one should avoid 
ascribing characters to adaptation simply due to their 
present use. Random events may have led to the 
existence of the character, which was used to 
advantage only later. Before adaptation can be 
judged the cause of the emergence of a character, 
other explanations must be ruled out. 

Consistent with these ideas, a third explanation of 
the observed marginal stability in proteins involves 
the concept of regions of sequence space and what 
has been termed ‘designability’ (Govindarajan and 
Goldstein 1995; Govindarajan and Goldstein 1996; 
Li et al. 1996; Buchler and Goldstein 1998; 
Shakhnovich 1998; England, Shakhnovich, and 
Shakhnovich 2003). The idea is that the ‘sequence 
entropy’ or volume of sequence space corresponding 
to any property influences whether this property is 
likely to result from evolutionary dynamics. This 
idea has been applied to the distribution of different 
structures (Finkelstein and Ptitsyn 1987; 
Govindarajan and Goldstein 1995; Govindarajan and 
Goldstein 1996; Li et al. 1996), the question of 
whether proteins fulfill the thermodynamic 
hypothesis (Govindarajan and Goldstein 1998), the 
stability of proteins, (Taverna and Goldstein 2002), 
ligand binding properties (Blackburne and Hirst 
2001; Williams, Pollock, and Goldstein 2001; 
Blackburne and Hirst 2003; Bloom et al. 2004), and 
the ability of proteins to explore a range of different 
structures (Govindarajan and Goldstein 1997a; 
Govindarajan and Goldstein 1997b; Bornberg-Bauer 
and Chan 1999; Taverna and Goldstein 2000; Deeds, 
Dokholyan, and Shakhnovich 2003; Tiana et al. 
2004; Shakhnovich et al. 2005). In previous work 
exploring the evolution of lattice proteins with a 
fitness function dependent only on stability, it was 
found that sequence entropy was a sufficient 
explanation for the observation of marginal stability 
in proteins, and that this effect would favor 
mechanisms of function consistent with marginal 
stability (Taverna and Goldstein 2002). In further 
work, we developed a simple model with fitness 
represented by the ability of the protein to bind a 
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ligand, observing similar results (Williams, Pollock, 
and Goldstein 2001). 

To examine these hypotheses in the context of 
protein functionality and to extend the previous 
work, we simulate the evolution of proteins using a 
lattice-protein model of protein-folding and ligand-
binding that allows the study of protein stability and 
function. In these simulations, the fitness function is 
based on diffusion-limited reaction kinetics. The 
model is designed so that fitness increases with 
binding strength, which tends to increase with 
stability, meaning that marginally stable proteins 
have no evolutionary advantage over proteins of 
greater stability. We also observe no design 
constraints or trade-offs between stability and 
functionality among these evolved proteins. Our 
evolutionary simulations, however, lead to 
marginally stable proteins. This indicates again, with 
a more realistic simulation, that random evolution is 
sufficient to generate marginal stability. This does 
not prove that marginal stability is not an adaptation, 
but rather demonstrates that marginal stability could 
result in the absence of any adaptive role, that its 
presence does not indicate that it plays such an 
adaptive role, and therefore that marginal stability is 
not a phenomenon that needs an explanation based 
on evolutionary advantage. 

Methods 

Protein Model 
Protein models should accurately represent 
important and relevant aspects of real proteins yet be 
simple enough for rapid computational evaluation. 
Our model must be relatively simple indeed, as 
evolution simulations involve the examination of 
many protein sequences over a large number of 
generations. To examine the previously described 
hypotheses, the model must map protein sequence to 
stability in a compact state as well as the propensity 
for binding and acting upon a specified ligand. 

The details of this model have been more 
thoroughly described elsewhere (Williams, Pollock, 
and Goldstein 2001). Each model protein consists of 
a chain of 16 amino acids on a 2-dimensional square 
lattice. While the 2-dimensional model is 

problematic for dynamics simulations (Shakhnovich 
1997), for thermodynamic analyses involving sums 
over states it is more accurate at representing the 
appropriate number of buried vs. exposed residues. 
Intra-protein contacts are defined as non-
sequentially-adjacent residues one lattice-unit apart 
in distance. Compact structures have nine contacts 
(the maximum number possible for a 16-residue 
protein) and fit in a square with four residues per 
side. All 802,075 possible structures are considered, 
of which only 69 are compact. 

The free energy G(k) of a sequence {A1, A2…A16} 
in conformation k is given by 

(1) 

where γ(Ar, As) is the contact potential between 
amino acids Ar and As, and where Qk

r,s, is 1 if 
residues r and s are in contact in structure k, and is 
otherwise 0. The contact potentials are obtained 
from the statistical analysis of Miyazawa and 
Jernigan, who developed a contact-potential matrix 
that describes the interactions between amino acids 
(Miyazawa and Jernigan 1985). Due to the nature of 
this statistical analysis, these potentials represent 
‘potentials of mean force’, implicitly including 
hydrophobic interactions and other effects of the 
solvent. They therefore represent contributions to the 
free energy rather than enthalpy. In this matrix, the 
influence of covalent cysteine crosslinks is shown by 
the high magnitude of the Cys-Cys potential. As 
such binary interactions are incompatible with the 
contact potential as encoded in our model, and 
would significantly change the number and character 
of allowed conformations, we do not consider them 
in our model. To account for this, we use a modified 
potential matrix where the Cys-Cys potential has 
been replaced by the Ser-Ser potential. In addition, 
the values in the matrix have all been multiplied by 
two to counteract the effect of the limited number of 
two dimensions. 

We use Boltzmann statistics to determine P(k) , 
the thermodynamic probability of folding into 
conformation k, assuming all conformations are in 
equilibrium: 
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where T is the temperature and kB is Boltzmann’s 
constant, and again the sum in the denominator is 
over all structures, both compact and extended. 
P(Compact) is defined as the sum of probabilities of 
all compact structures; the change in free energy 
upon folding into a compact state is then 

where ΔSlig is the concentration-dependent change in 
the entropy of the ligand upon binding. We represent 
the probability of ligand bound by P0(Bound) to 
indicate that this is calculated without considering 
any forward reactions, that this assumes an 
equilibrium between the bound and unbound forms. 

Under conditions when very little of the protein is 
bound to ligand, we can ignore the second term in 
the denominator and calculate the relative 
probability of the protein binding the ligand for a 
fixed concentration by multiplying P0(Bound) by 
exp(−ΔSlig/kB), yielding 

(2) 

(3) 

We assume that the conformation with the lowest 
free energy should be the native state of the protein; 
since we are mainly interested in compact structures, 
the compact structure with the lowest free energy 
shall be referred to as the native state (Govindarajan 
and Goldstein 1998). 

We model protein-ligand binding as a four-
residue peptide contacting any of the four sides of a 
compact protein, such that maximal contact between 
the ligand and the face of the protein is made, as 
illustrated in Figure 1. The ligand may face either of 
two directions on any of the four sides of a 
conformation, so there are 69 × 4 × 2 = 552 possible 
binding sites on a protein sequence. The free energy 
of a complex where the protein is in compact 
conformation k and the ligand is bound to site l is 

(4) 

where q is over the four locations in the peptide 
ligand, and Qk,l

r,q is equal to 1 if residue r in the 
protein is in contact with residue q in the ligand in 
this particular bound conformation. We use 
Boltzmann statistics to determine the probability that 
the protein binds the ligand 

P0(Bound) = 

(5) 

(6) 

Evolution Model 
We model a population of random proteins evolving 
through mutation and replication. Starting with an 
initial population of 1000 protein sequences, we 
allow a fixed rate of mutations, modeled as a 
Poisson distribution with a mean of 20 mutations per 
generation. Sequences are then replicated according 
to their fitness, as described below. The population 
size is maintained at a constant level of 1000 
proteins throughout the experiment. 

Measure of Fitness 
Many factors affect the evolutionary success of a 
protein, ranging from the intrinsic properties of the 

. 

. 



 Functionality and marginal stability in proteins 

Evolutionary Bioinformatics Online 2006:2   5 

protein to external and indirectly related 
circumstances. For this paper, we are concerned only 
with the effects of selection for protein functionality. 
To study these effects, we construct a fitness 
function based on the rate of catalysis of bound 
ligands. 

Assuming that product-formation is beneficial, 
we consider fitness directly proportional to the rate 
of catalysis. We model this rate with Michaelis--
Menten kinetics, corresponding to reactions of the 
following type, 

proteins in the absence of any specific advantage to 
marginal stability. For this reason, we assume that k2 
is independent of binding strength. In this case, the 
rate of catalysis, and thus the fitness used in the 
evolution simulations, is given by 

Figure 1. An example of a model protein in a compact 
conformation bound to a ligand, shown in grey. Covalent 
bonds are shown as solid lines, contact interactions as 
thick (intramolecular) and thin (intermolecular) stripes. 

(7) 

where P, L, and PL are the protein, ligand, and 
protein-ligand encounter complex, respectively, and 
kD, kuni , and k2 are the rates of diffusional encounter, 
unimolecular dissociation, and catalysis, 
respectively. While our protein-ligand binding 
model is designed for the calculation of 
thermodynamic probabilities and cannot be used to 
explicitly calculate the kinetics of folding or binding 
processes, we assume that kD does not depend upon 
the strength of binding, so that as P0(Bound) 
increases, kuni should decrease to satisfy the 
conditions for equilibrium. 

We are interested in investigating the ease with 
which marginal stability could result in evolving 

(8) 

where P0(Bound)½ is equal to 

(9) 

and P0
rel(Bound)½ ≡ exp(−ΔSlig)P0(Bound)½. (See 

Appendix for a detailed derivation.) 
Fitness increases monotonically with increasing 

P0
rel(Bound), and approaches the maximum value 

asymptotically. This asymptotic domain represents 
the diffusion-limited nature of Michaelis-Menten 
kinetics - at a certain point, better ligand-binding 
will not result in faster catalysis. 

In our evolution runs, proteins are selected for 
their ability to bind a specific ligand. The sixteen 
four-residue permutations of glutamate and lysine 
can form the strongest binding interactions of any 
ligand, while the optimal binding interaction of a 
polyalanine ligand is the weakest possible. We 
performed evolution runs using the ligands AAAA, 
EEEE, and EKEK, to examine the influence ligand-
choice has on evolution. Real proteins have a wide 
range of k2 values, and act on ligands of varying 
concentration, diffusion rates, and ΔSlig. To account 
for this variety, we performed simulations with a 
range of values for P0

rel(Bound)½. For AAAA, 
P0

rel(Bound)½  was 1.25, 12.5, 50, and 100, for EEEE 
it was 1.25, 100, 400, 3750, 7500 and 15,000, and 
for EKEK it was 1.25, 100, 400, and 3750. 

In addition to performing evolution experiments, 
we also optimise proteins for maximum fitness. 
Beginning with a random sequence and a specified 
ligand, we perform hill-climbing walks on the 
fitness landscape. The steps made on this landscape 
are random point mutations of the protein sequence; 
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a mutation is accepted if it results in an increase in 
the fitness, that is to say, an increase in P0

rel(Bound). 
This walk is continued until the protein sequence 
resulting in a local fitness maximum is reached. By 
calculating the fitness for all single-point-mutants of 
the sequence, we ensure that the sequence is indeed 
at a local-maximum. We performed 1000 
optimization runs for each ligand. We also perform 
similar hill-climbing walks designed to maximise 
P(Compact), independent of any fitness based on 
ligand-binding or catalysis. 

Results 
The results of a typical evolution run, showing 
population-weighted averages of P(Compact) and 
P0

rel(Bound) are illustrated in Figure 2. The data for 
the first 10,000 generations are the results of one of 
the fifty experimental runs with ligand EEEE and 
P0

rel(Bound)½ = 15,000. This run has been extended 
for an additional 5000 generations with a lower 
P0

rel(Bound)½ of 1.25. 〈P0
rel(Bound)〉 increases 

steadily and rapidly for several hundred generations, 
then fluctuates until generation 10,000. This 
behaviour is due to the semineutral relationship 
between fitness and P0

rel(Bound) described in 
equation 8. Initially, proteins with higher values of 
P0

rel(Bound) have a selective advantage and are more 
successful at reproducing, resulting in the increase 
of 〈P0

rel(Bound)〉. As proteins with very high values 
of P0

rel(Bound) emerge and become established in the 
population, the selective advantage of higher binding 
probability diminishes, proteins become more 
equally fit, and the makeup of population becomes 
more subject to random factors than to fitness 
effects. After P0

rel(Bound)½ decreases at generation 
10,000, 〈P0

rel(Bound)〉 decreases rapidly, not due to 
selection for weaker binding affinity, but due to the 
larger number of mutations that decrease rather than 
increase binding affinity. For both values of 
P0

rel(Bound)½, but especially for P0
rel(Bound)=15,000  

P(Compact) is approximately equal to P(Native 
State), indicating that one compact conformation is 
dominant at equilibrium. It is also generally true that 
the simulations produce a single dominant binding 
site, which dominates P0

rel(Bound). 
Figure 3 illustrates the physical properties of the 

final generations of the evolution experiments for 

two different ligands, AAAA (3a-3b) and EEEE (3c-
3d), compared with the proteins that result from 
optimization through hill-climbing. Results for 
different values of P0

rel(Bound)½ are represented as 
different colours on the graphs. To examine the 
stability distribution of the evolved and optimised 
proteins, we plot cumulative distributions of their 
levels (calculated with Equation 3) in Figures 3a and 
3c. These results are population-weighted, so that 
common, well-represented proteins influence the 
distribution more than poorly-represented transients. 
Most proteins have ΔG(Compact) > −1 , indicating 
that proteins are at most marginally stable, 
consistent with observations of real proteins. This is 
more clearly evident compared with the distribution 
of ΔG(Compact) values for proteins that have been 
optimised for stability with a hill-climbing 
algorithm. 

There are several possible explanations for the 
relationship between overall protein stability and 
probability of binding a ligand. Thermodynamically, 

Figure 2. Extended typical evolution run with fitness  
based  on  ability  to  bind  and catalyze  EEEE,  showing 
the effects  of  changing  P0

rel(Bound)½.  The  value  of  
P0

rel(Bound)½ in the first 10,000 generations equals 
15,000, and for the last 5000 generations P0

rel(Bound)½ 
equals 1.25. The values plotted are population-weighted 
averages. Blue line: 〈P(Compact)〉, the probability that a 
protein is in a compact state. Red line: 〈P0

rel(Bound)〉, the 
relative probability that a protein binds a ligand at any site 
in any conformation.  〈P(Native State)〉, the probability of 
the compact structure with minimum free energy, is 
indistinguishable from 〈P(Compact)〉 throughout the 
simulation. 
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we would expect that a protein with higher stability 
would, on average, bind more strongly than unstable 
proteins, due to the entropy penalty when a less-
stable protein binds a ligand. Alternatively, the 
‘optimization given constraints’ model suggests that 
there might be a negative correlation between 
protein stability and binding, as the residues that 
optimized stability might not be the same as the 
residues that optimised binding interactions. The 
positive correlation between binding probability and 
protein stability shown in Figures 3b and 3d, 
demonstrates that the thermodynamic effect 
dominates any possible trade-offs between stability 
and binding. 

Further evidence of the lack of trade-off between 
ligand binding and protein stability is provided by 
considering the proteins that have been optimised for 
binding by the hillclimbing algorithm. We observe 
no correlation between the stability of the proteins 
that result and the strength of their binding 
interactions with the peptide ligand, as would be 
expected if strong binding interactions were 
incompatible with high protein stability. 

In general, the properties of evolved proteins fall 
within a range of values, but the ligand and the 
P0

rel(Bound)½ affect the properties of resulting 
proteins within these bounds. As can be seen in 
Figure 3, among proteins evolved to bind AAAA 

Figure 3. The properties of evolved and optimised proteins, colour-coded by the value of P0
rel(Bound)½:P0

rel(Bound)½ =1.25 
(red), 100 (green), 3750 (magenta), and 15,000 (blue). Not all values of P0

rel(Bound)½ are included in each plot. In the left 
column (panels a, b) the ligand is AAAA, in the right (panels c, d), EEEE. a and c. Cumulative distribution of protein 
conformational stability. The fraction of final-generation (or optimized) proteins with a ∆G(Compact) less than the value on 
the x-axis is plotted on the y-axis. The properties of proteins optimised for compaction are represented in black. b and d. 
Scatter 22 plot of relative binding probability vs. protein conformational stability. Each point represents the population 
average of one simulation at the final generation. Black line represents the averages of approximately 8000 proteins 
optimised to bind the ligand. Simulations with similar values of  ∆G(Compact) were binned together into 50 groups, and 
average values of ∆G(Compact) and P0

rel(Bound) computed for proteins in each group. 
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there are no discernible changes in the distributions 
of protein stability, binding probability, and binding 
interaction strength with different values of 
P0

rel(Bound)½, but among proteins evolved to bind 
EEEE these quantities tend to increase with 
P0

rel(Bound)½. In addition, the variation in protein 
properties is higher for proteins evolved with EEEE, 
especially at lower values of P0

rel(Bound)½. Proteins 
evolved to bind EKEK have similar properties to 
proteins evolved to bind EEEE. 

These differences are due to the nature of the 
ligand. A mutation can increase P0

rel(Bound) in two 
ways: by increasing the complementarity of a 
binding site or by increasing the probability of a 
compact state with a favourable binding site. The 
binding strength of AAAA is of lesser magnitude 
than that of EEEE, reflecting the difference in the 
strength of optimal binding interaction. This means 
that AAAA can only form weak binding 
interactions; as soon as binding faces evolve that 
form these interactions, the only way to increase 
P0

rel(Bound) is to increase the probability of being in 
the conformationally correct state. Not all proteins 
evolved to bind AAAA have formed an optimal-
interaction binding site, but binding interactions in 
most proteins are close to optimal. Proteins evolving 
to bind EEEE can form stronger binding interactions 
with a wider variety of binding faces, and a wider 
variety of successful proteins results. The results for 
EKEK are similar to those for EEEE. Proteins 
optimised for ligand binding tend to be relatively 
stable and have relatively strong binding interactions 
compared with evolved proteins; in contrast, evolved 
proteins have higher variation in both ΔG(Bound) 
and ΔG(Compact). 

Discussion 
Figure 3 shows that most proteins resulting from our 
evolutionary experiments are not highly stable, 
consistent with observations about real proteins. In 
fact, most of the resulting proteins tend to have low 
or marginal stability levels, depending on ligand and 
value of P0

rel(Bound)½. 
As described in the Introduction, there are two 

different possible reasons generally given for the 
marginal stability of real proteins - either a specific 

selective advantage of marginal stability, or a co-
optimization of the conflicting qualities of stability 
and other aspects of functionality. In our model, we 
have eliminated the first possibility by construction, 
in that proteins that bind more strongly have a higher 
fitness. We also observe a positive correlation 
between stability and fitness, so the theory of 
conflicting design pressures does not apply in our 
model. With both of these possible explanations 
inappropriate for these simulations, we still observe 
marginally stable proteins. 

This provides evidence that sequence entropy, the 
third possible explanation, is sufficient to explain the 
observation of marginal stability in biological 
proteins. We are not ruling out the other proposed 
explanations, but we can explain the observed 
properties of evolved proteins without them. The 
existence of marginal stability in real proteins 
implies neither an evolutionary advantage to 
marginal stability nor a trade-off between stability 
and binding strength. The most parsimonious 
explanation for marginal stability does not include 
either of these two mechanisms. 

The protein models used in this study are smaller 
than realistic proteins, and thus might better 
represent the area surrounding an active site more 
than an entire protein. Of the three explanations used 
to explain marginal stability - evolutionary 
advantage of marginal stability, negative correlation 
between stability and fitness due to design 
constraints, and sequence entropy - we would expect 
the first explanation to be independent of protein 
size, the second explanation to be especially 
appropriate around the active site, while the third 
explanation would involve the entire protein, as the 
protein generally is required to be folded in order to 
bind and catalyse a ligand. The fact that we do not 
observe evidence for the second explanation while 
the third explanation seems to be adequate in these 
smaller models suggests that it should also be 
adequate when a more realistically-sized protein is 
considered. 

The effect of the underlying nature of protein 
sequence space may have been more important in 
early protein evolution. Most proteins with random 
amino-acid sequences are highly unstable (in our 
model, and likely in the real world), so the first 
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existing proteins would likely have been unstable as 
well. Some degree of stability was likely beneficial, 
so mutations that lead to increased stability were 
accepted. At a certain point, the fitness gains of 
higher stability were counter-acted by the effect of 
sequence entropy, and thus protein stability did not 
increase further. 
The resulting stability depends upon the ligand, as 
well as P0

rel(Bound)½. Specific predictions can be 
made on the basis of this analysis. For instance, we 
would expect that observed protein stabilities should 
depend upon the corresponding value of 
P0

rel(Bound)½ = exp(−ΔSlig/kB)kD[L]/k2, in that ligands 
with higher values of P0

rel(Bound)½ would likely 
correspond to more stable proteins. This would be 
the case for smaller ligands (faster kD), and slower 
catalysis (slower k2). In fact, one might expect that 
protein stabilities could lessen with time as the 
catalytic steps became more optimised, reducing the 
value of P0

rel(Bound)½. The current analysis also 
suggests that highly-sticky proteins (strong binding 
strength) would correspond to proteins with less 
stability, as the selective pressure on stability would 
be reduced. While there are obvious examples of 
this, such as calmodulin, further investigation is 
required to see if this is a general principle. 

Appendix: Derivation of the fitness 
function 
To derive the fitness function, we start with equation 
7. In the Michaelis-Menten model, the rate of 
change of [PL] is assumed to be zero, so the steady 
state concentration of PL is 

The rate of production of the final product is 

(10) 

The total concentration of protein, [P]T, is equal 
to [P]+[PL]. Solving for [P] and [PL] in terms of 
[P]T yields 

(11) 

(12) 

We can relate this to terms calculated from our 
protein model by expressing P0(Bound), the relative 
thermodynamic probability that the protein binds a 
ligand, in terms of protein and ligand concentrations. 
P0(Bound) = [PL]/[P]T, under conditions when there 
is no forward reaction, or k2=0. Under these 
conditions, equation 12 becomes,  

(14) 

Solving for kuni yields 

Substituting this expression into equation 13 yields 

We assume that kD, [P]T, and [L] remain 
relatively constant, and as fitness is relative and thus 
not changed by a multiplicative factor, the final 
fitness function is then: 

(17) 

where P0(Bound)½ = kD[L]/k2 is the value of 
P0(Bound) where the fitness is half the maximum 
fitness. 
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